1
|
Chen Y, Yang J, Zhao X, Sun Z, Li G, Hussain S, Li X, Zhang L, Wang Z, Gong H, Hou H. Effects of SpGSH1 and SpPCS1 overexpression or co-overexpression on cadmium accumulation in yeast and Spirodela polyrhiza. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109097. [PMID: 39244885 DOI: 10.1016/j.plaphy.2024.109097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/13/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Cadmium (Cd) is one of the most toxic elements to all organisms. Glutathione (GSH)-dependent phytochelatin (PC) synthesis pathway is considered an extremely important mechanism in Cd detoxification in plants. However, few studies have focused on the roles of glutamate-cysteine ligase (GSH1) and phytochelatin synthase (PCS1) in Cd accumulation and detoxification in plants. In this study, SpGSH1 and SpPCS1 were identified and cloned from Spirodela polyrhiza and analyzed their functions in yeast and S. polyrhiza via single- or dual-gene (SpGP1) overexpression. The findings of this study showed that SpGSH1, SpPCS1, and SpGP1 could dramatically rescue the growth of the yeast mutant Δycf1. In S. polyrhiza, SpGSH1 was located in the cytoplasm and could promote Mn and Ca accumulation. SpPCS1 was located in the cytoplasm and nucleus, mainly expressed in meristem regions, and promoted Cd, Fe, Mn, and Ca accumulation. SpGSH1 and SpPCS1 co-overexpression increased the Cd, Mn, and Ca contents. Based on the growth data of S. polyrhiza, it was recommended that biomass as the preferable indicator for assessing plant tolerance to Cd stress compared to frond number in duckweeds. Collectively, this study for the first time systematically elaborated the function of SpGSH1 and SpPCS1 for Cd detoxification in S. polyrhiza.
Collapse
Affiliation(s)
- Yan Chen
- Special Agricultural Resources in Tuojiang River Basin Sharing and Service Platform of Sichuan Province, Analysis and Testing Center, College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641112, Sichuan, China
| | - Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Zuoliang Sun
- Shandong Provincial University Laboratory for Protected Horticulture, Jia Sixie College of Agriculture, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Sajid Hussain
- State Key Laboratory of Rice Biology, China National Rice Research Institute, 310006, Hangzhou, China; Soil and Water Testing Laboratory Marketing Division, Pakarab, Khanewal Road, Multan, 36000, Pakistan
| | - Xiaozhe Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Liyuan Zhang
- Special Agricultural Resources in Tuojiang River Basin Sharing and Service Platform of Sichuan Province, Analysis and Testing Center, College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641112, Sichuan, China
| | - Zhenye Wang
- Special Agricultural Resources in Tuojiang River Basin Sharing and Service Platform of Sichuan Province, Analysis and Testing Center, College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641112, Sichuan, China
| | - Huihua Gong
- Special Agricultural Resources in Tuojiang River Basin Sharing and Service Platform of Sichuan Province, Analysis and Testing Center, College of Chemistry and Chemical Engineering, Neijiang Normal University, Neijiang, 641112, Sichuan, China
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| |
Collapse
|
2
|
Sharma M, Sharma S, Paavan, Gupta M, Goyal S, Talukder D, Akhtar MS, Kumar R, Umar A, Alkhanjaf AAM, Baskoutas S. Mechanisms of microbial resistance against cadmium - a review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:13-30. [PMID: 38887775 PMCID: PMC11180082 DOI: 10.1007/s40201-023-00887-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 11/15/2023] [Indexed: 06/20/2024]
Abstract
The escalating cadmium influx from industrial activities and anthropogenic sources has raised serious environmental concerns due to its toxic effects on ecosystems and human health. This review delves into the intricate mechanisms underlying microbial resistance to cadmium, shedding light on the multifaceted interplay between microorganisms and this hazardous heavy metal. Cadmium overexposure elicits severe health repercussions, including renal carcinoma, mucous membrane degradation, bone density loss, and kidney stone formation in humans. Moreover, its deleterious impact extends to animal and plant metabolism. While physico-chemical methods like reverse osmosis and ion exchange are employed to mitigate cadmium contamination, their costliness and incomplete efficacy necessitate alternative strategies. Microbes, particularly bacteria and fungi, exhibit remarkable resilience to elevated cadmium concentrations through intricate resistance mechanisms. This paper elucidates the ingenious strategies employed by these microorganisms to combat cadmium stress, encompassing metal ion sequestration, efflux pumps, and enzymatic detoxification pathways. Bioremediation emerges as a promising avenue for tackling cadmium pollution, leveraging microorganisms' ability to transform toxic cadmium forms into less hazardous derivatives. Unlike conventional methods, bioremediation offers a cost-effective, environmentally benign, and efficient approach. This review amalgamates the current understanding of microbial cadmium resistance mechanisms, highlighting their potential for sustainable remediation strategies. By unraveling the intricate interactions between microorganisms and cadmium, this study contributes to advancing our knowledge of bioremediation approaches, thereby paving the way for safer and more effective cadmium mitigation practices.
Collapse
Affiliation(s)
- Monu Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Sonu Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Paavan
- Department of Biotechnology, Ambala College of Engineering and Applied Research, Devsthali, Ambala, 133101 Haryana India
| | - Mahiti Gupta
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Soniya Goyal
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Daizee Talukder
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Mohd. Sayeed Akhtar
- Department of Botany, Gandhi Faiz-E-Aam College, Shahjahanpur, 242001 Uttar Pradesh India
| | - Raman Kumar
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and ArtsPromising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001 Kingdom of Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Abdulrab Ahmed M. Alkhanjaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 11001 Najran, Saudi Arabia
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500 Patras, Greece
| |
Collapse
|
3
|
Capcarova M, Frigenti M, Arvay J, Janco I, Harangozo L, Bandlerova A, Sartoni M, Guidi A, Stawarz R, Formicki G, Argente MJ, Massanyi P. Levels of Essential and Trace Elements in Mozzarella Available on the Slovak Market with the Estimation of Consumer Exposure. Biol Trace Elem Res 2024; 202:2357-2366. [PMID: 37594594 PMCID: PMC10955032 DOI: 10.1007/s12011-023-03813-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
The aim of this study was to determinate the content of some elements in a specific dairy product, mozzarella, in a particular area of western Slovakia and to evaluate the estimation of the risk to the consumers based on the contribution to the provisional tolerable weekly intake. The consumption of mozzarella can contribute to the intake of important elements in the diet, such as calcium and magnesium, along with others. The contents of some toxic and trace elements were low and have not exceeded the permitted limit. In addition, the contribution to PTWI was found to be very low, which means that the consumption of mozzarella possesses no risk to humans. It is concluded that the data obtained in this study can help as a valuable addition to methodological and scientific material in the field of food safety of dairy products and their positive impact on human health.
Collapse
Affiliation(s)
- Marcela Capcarova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic.
| | - Marcella Frigenti
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Julius Arvay
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Ivona Janco
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Lubos Harangozo
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Anna Bandlerova
- Institute of Law, Faculty of European Studies and Regional Development, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| | - Martina Sartoni
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Alessandra Guidi
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Robert Stawarz
- Institute of Biology, Pedagogical University of Cracow, Ul. Podchorazych 2, 30-084, Cracow, Poland
| | - Gregorz Formicki
- Institute of Biology, Pedagogical University of Cracow, Ul. Podchorazych 2, 30-084, Cracow, Poland
| | - Maria-Jose Argente
- Department of Agro-Food Technology, Universidad Miguel Hernández de Elche, 03312, Orihuela, Spain
| | - Peter Massanyi
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovak Republic
| |
Collapse
|
4
|
Hashami Z, Chabook N, Javanmardi F, Mohammadi R, Bashiry M, Mousavi Khaneghah A. The concentration and prevalence of potentially toxic elements (PTEs) in cheese: a global systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:479-498. [PMID: 36469799 DOI: 10.1080/09603123.2022.2153810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The present study aimed to systematically review the concentration of different PTEs, including Arsenic (As), Mercury (Hg), Lead (Pb), and Cadmium (Cd) in cheese among some databases between 2000 and 2021 (from 57 included studies). Estimated concentrations of 160.78 (95% CI = 119.24-202.28), 15.68 (95% CI = 11.88-19.48), 16.94 (95% CI = 13.29-20.59), and 2.47 (95% CI = 1.70-3.23) µg/kg were calculated for As, Pb, Cd, and Hg, respectively. Most of the studies for PTEs are related to Pb, about 40% of the studies, compared to As, which has fewer studies. The results showed that As and Hg concentrations were lower than the Codex Alimentarius Commission standard limits. Nevertheless, Cd and Pb concentrations were higher than the standard limit values. Results showed that cheese making, the ripening period, fat content, and texture are influential factors in a high level of Pb and Cd in cheese samples.
Collapse
Affiliation(s)
- Zahra Hashami
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negar Chabook
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Mohammadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Moein Bashiry
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
5
|
Qu J, Wang Q, Niu H, Sun X, Ji D, Li Y. Melatonin protects oocytes from cadmium exposure-induced meiosis defects by changing epigenetic modification and enhancing mitochondrial morphology in the mouse. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114311. [PMID: 36410142 DOI: 10.1016/j.ecoenv.2022.114311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is one major environmental pollutant that can cause detrimental impacts on human as well as animal reproductive systems as a result of oxidative stress. It is widely acknowledged that melatonin secreted principally by the pineal gland is not only a natural potent antioxidant but also a free radical scavenger, whereas concerning how to alleviate the toxic effects of Cd on oocyte maturation remains elusive. In this investigation, it was the first time to explore the protective effects and potential mechanism of melatonin on meiotic maturation of mouse oocytes exposed to Cd in vitro medium. We found that Cd exerts adverse effects on meiotic maturation progression by disrupting the normal function of mitochondrion combined with the aberrant mitochondrial distribution and decreased membrane potential and altering epigenetic modification, including H3K9me2 and H3K4me2. Additionally, it was observed that Cd exposure disrupted the morphology of spindle organization and caused chromosome misalignment, which might be through changing the level of acetylated tubulin, whereas melatonin administration alleviated the toxic impacts of Cd on oocytes. Furthermore, the mitochondrial morphology-related genes mRNA expression and protein expression of autophagy-related genes was also investigated. The results suggested that melatonin supplementation significantly altered the mRNA expression of mitochondrial dynamics-related genes, rather than the expression of mitophagy-related proteins. Taken together, our results validated that melatonin administration has a certain protective impact against oocytes meiosis maturation defects induced by cadmium through changing epigenetic modification and enhancing mitochondrial morphology rather than mitophagy.
Collapse
Affiliation(s)
- Jingwen Qu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; The department of Animal and Veterinary Science, University of Vermont, Burlington, VT 05405, USA.
| | - Qiang Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Haoyuan Niu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Xiaomei Sun
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Dejun Ji
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Yongjun Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
6
|
de Oliveira Filho EF, Miranda M, Ferreiro T, Herrero-Latorre C, Castro Soares P, López-Alonso M. Concentrations of Essential Trace and Toxic Elements Associated with Production and Manufacturing Processes in Galician Cheese. Molecules 2022; 27:molecules27154938. [PMID: 35956892 PMCID: PMC9370589 DOI: 10.3390/molecules27154938] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to determine the trace element composition and the toxic metal residues in Galician cow’s milk cheese produced in different systems (artisan, industrial, and organic). Fourteen elements (As, Cd, Co, Cr, Cu, Fe, Hg, I, Mn, Mo, Ni, Pb, Se, and Zn) were determined in 58 representative samples of Galician cheeses by inductively coupled plasma mass spectrometry. The toxic elements were present at low concentrations, similar to those reported for other unpolluted geographical areas. The essential elements were also within the normal range in cheeses. There were no statistically significant differences between smoked and unsmoked cheeses for any of the elements. Chemometric analyses (principal component analysis and cluster analysis) revealed that the industrial cheeses produced in Galicia using the milk from intensive dairy farms were different, in terms of elemental content, from artisan and organic cheeses, in which the elemental contents were similar.
Collapse
Affiliation(s)
- Emanuel Felipe de Oliveira Filho
- Department of Veterinary Medicine/UFRPE, Rua Dom Manoel de Medeiros, Dois Irmãos, Recife 52171-900, Brazil; (E.F.d.O.F.); (P.C.S.)
- Department of Animal Pathology, Faculty of Veterinary, University of Santiago de Compostela, Campus Terra, 27002 Lugo, Spain;
| | - Marta Miranda
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Campus Terra, 27002 Lugo, Spain
- Correspondence:
| | - Tania Ferreiro
- Technological Platform: Aula de Productos Lácteos y Tecnologías Alimentarias, University of Santiago de Compostela, Campus Terra, 27002 Lugo, Spain;
| | - Carlos Herrero-Latorre
- Research Institute on Chemical and Biological Analysis, Analytical Chemistry, Nutrition and Bromatology Department, Faculty of Sciences, University of Santiago de Compostela, Campus Terra, 27002 Lugo, Spain;
| | - Pierre Castro Soares
- Department of Veterinary Medicine/UFRPE, Rua Dom Manoel de Medeiros, Dois Irmãos, Recife 52171-900, Brazil; (E.F.d.O.F.); (P.C.S.)
| | - Marta López-Alonso
- Department of Animal Pathology, Faculty of Veterinary, University of Santiago de Compostela, Campus Terra, 27002 Lugo, Spain;
| |
Collapse
|
7
|
Zhang M, Yang BY, Sun Y, Qian Z, Xaverius PK, Aaron HE, Zhao X, Zhang Z, Liu R, Dong GH, Yin C, Yue W. Non-linear Relationship of Maternal Age With Risk of Spontaneous Abortion: A Case-Control Study in the China Birth Cohort. Front Public Health 2022; 10:933654. [PMID: 35910867 PMCID: PMC9330030 DOI: 10.3389/fpubh.2022.933654] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Background Spontaneous abortion is one of the prevalent adverse reproductive outcomes, which seriously threatens maternal health around the world. Objective The current study is aimed to evaluate the association between maternal age and risk for spontaneous abortion among pregnant women in China. Methods This was a case-control study based on the China Birth Cohort, we compared 338 cases ending in spontaneous abortion with 1,352 controls resulting in normal live births. The main exposure indicator and outcome indicator were maternal age and spontaneous abortion, respectively. We used both a generalized additive model and a two-piece-wise linear model to determine the association. We further performed stratified analyses to test the robustness of the association between maternal age and spontaneous abortion in different subgroups. Results We observed a J-shaped relationship between maternal age and spontaneous abortion risk, after adjusting for multiple covariates. Further, we found that the optimal threshold age was 29.68 years old. The adjusted odds ratio (95% confidence interval) of spontaneous abortion per 1 year increase in maternal age were 0.97 (0.90–1.06) on the left side of the turning point and 1.25 (1.28–1.31) on the right side. Additionally, none of the covariates studied modified the association between maternal age and spontaneous abortion (P > 0.05). Conclusions Advanced maternal age (>30 years old) was significantly associated with increased prevalence of spontaneous abortion, supporting a J-shaped association between maternal age and spontaneous abortion.
Collapse
Affiliation(s)
- Man Zhang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongqing Sun
- Beijing Maternal and Child Health Care Hospital, Beijing, China
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Zhengmin Qian
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO, United States
| | - Pamela K. Xaverius
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO, United States
| | - Hannah E. Aaron
- Department of Epidemiology and Biostatistics, College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO, United States
| | - Xiaoting Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Zheng Zhang
- Beijing Maternal and Child Health Care Hospital, Beijing, China
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Ruixia Liu
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
- *Correspondence: Ruixia Liu
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Guang-Hui Dong
| | - Chenghong Yin
- Beijing Maternal and Child Health Care Hospital, Beijing, China
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Chenghong Yin
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
- Beijing Maternal and Child Health Care Hospital, Beijing, China
- Wentao Yue
| |
Collapse
|
8
|
Teixeira JLDP, Pallone JAL, Andrade CD, Mesías M, Seiquer I. Bioavailability evaluation of calcium, magnesium and zinc in Brazilian cheese through a combined model of in vitro digestion and Caco-2 cells. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Evidence for Ovarian and Testicular Toxicities of Cadmium and Detoxification by Natural Substances. STRESSES 2021. [DOI: 10.3390/stresses2010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cadmium (Cd) is an environmental toxicant, capable of reducing mitochondrial ATP production and promoting the formation of reactive oxygen species (ROS) with resultant oxidative stress conditions. The ovary and testis are the primary gonads in which female gametes (oocytes) and male gametes (spermatozoa), estrogen and testosterone are produced. These organs are particularly susceptible to Cd cytotoxicity due to their high metabolic activities and high energy demands. In this review, epidemiological and experimental studies examining Cd toxicities in gonads are highlighted together with studies using zinc (Zn), selenium (Se), and natural substances to reduce the effects of Cd on follicular genesis and spermatogenesis. Higher blood concentrations of Cd ([Cd]b) were associated with longer time-to-pregnancy in a prospective cohort study. Cd excretion rate (ECd) as low as 0.8 μg/g creatinine was associated with reduced spermatozoa vitality, while Zn and Se may protect against spermatozoa quality decline accompanying Cd exposure. ECd > 0.68 µg/g creatinine were associated with an increased risk of premature ovarian failure by 2.5-fold, while [Cd]b ≥ 0.34 µg/L were associated with a 2.5-fold increase in the risk of infertility in women. Of concern, urinary excretion of Cd at 0.68 and 0.8 μg/g creatinine found to be associated with fecundity are respectively 13% and 15% of the conventional threshold limit for Cd-induced kidney tubular effects of 5.24 μg/g creatinine. These findings suggest that toxicity of Cd in primary reproductive organs occurs at relatively low body burden, thereby arguing for minimization of exposure and environmental pollution by Cd and its transfer to the food web.
Collapse
|
10
|
Effects of Cadmium, Lead, and Mercury on the Structure and Function of Reproductive Organs. TOXICS 2020; 8:toxics8040094. [PMID: 33137881 PMCID: PMC7711607 DOI: 10.3390/toxics8040094] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
Reproductive organs are essential not only for the life of an individual but also for the survival and development of the species. The response of reproductive organs to toxic substances differs from that of other target organs, and they may serve as an ideal “barometer” for the deleterious effects of environmental pollution on animal and human health. The incidence of infertility, cancers, and associated maladies has increased in the last fifty years or more, while various anthropogenic activities have released into the environment numerous toxic substances, including cadmium, lead, and mercury. Data from epidemiological studies suggested that environmental exposure to cadmium, lead, and mercury may have produced reproductive and developmental toxicity. The present review focused on experimental studies using rats, mice, avian, and rabbits to demonstrate unambiguously effects of cadmium, lead, or mercury on the structure and function of reproductive organs. In addition, relevant human studies are discussed. The experimental studies reviewed have indicated that the testis and ovary are particularly sensitive to cadmium, lead, and mercury because these organs are distinguished by an intense cellular activity, where vital processes of spermatogenesis, oogenesis, and folliculogenesis occur. In ovaries, manifestation of toxicity induced by cadmium, lead, or mercury included decreased follicular growth, occurrence of follicular atresia, degeneration of the corpus luteum, and alterations in cycle. In testes, toxic effects following exposure to cadmium, lead, or mercury included alterations of seminiferous tubules, testicular stroma, and decrease of spermatozoa count, motility and viability, and aberrant spermatozoa morphology.
Collapse
|