Abstract
The occurrence and associations of Ag, As, Ba, Bi, Cd, Co, Cu, Cs, Hg, Ni, Pb, Rb, Sb, Sr, Tl, U, V, W, and Zn, including data that have not been previously reported on Be, Hf, In, Li, Mo, Nb, Sn, Ta, Th, Ti and Zr, and the sum of (14) rare earth elements (ƩREE), were studied in a spatially diverse collection of the B. edulis caps, stipes, and whole fruiting bodies using a validated procedure with measurement by quadrupole ICP-MS. Toxic Cd and Pb were in B. edulis at concentrations below limits set by the European Union in regulations for raw cultivated mushrooms, while Ag, As, Hg, Sb, Tl, and U, which are not regulated, were at relatively low or typical levels as is usually found in mushrooms from an unpolluted area. The elements Be, Bi, Ga, Ge, Hf, In, Nb, Ta, Th, and W, and also ƩREEs, were found at relatively low concentrations in B. edulis, i.e., with levels from below 0.1 to below 0.01 mg kg-1 dw, and for Ʃ14 REEs, the median was 0.31 mg kg-1 dw. The composite samples of caps showed Ag, Cd, Cu, Cs, Ga, Ge, Hg, Mo, Ni, Rb, Sb, Ti, and Zn at higher concentrations than stipes, while Ba, Co, Hf, Sr, Tl, and Zr were found at higher concentrations in stipes than caps (p < 0.05). Mushrooms were characterized by a low coefficient of variation (CV) of below 20%, between sites for concentrations of As, Cu, Ge, Hg, Ni, V, and Zn, while substantial differences (CV > 100%) were found for Ba, Bi, Co, Hf, Zr, and ƩREEs, and an intermediate variation was found for Sr, W, and U. Principal component analysis performed on mushrooms allowed differentiation with respect to 13 collection sites and separation of a consignment that was specifically contaminated, possibly due to a legacy pollution, with significantly higher levels of Ba, Co, Ga, Li, Nb, Ni, Sr, Th, Ti, Y, Zr, and ƩREEs, and another due to possible recent pollution (Pb-gasoline and also Ni); two due to geological contamination because of the Bi, In, Sc, Sb, Sn, Ta, V and W; and one more, the Sudety Mts. site, which was considered as "geogenic/anthropogenic" due to Ag, As, Be, Cd, Cs, Ni, Pb, Rb, Tl, and U.
Collapse