2
|
Petkova-Marinova TV, Ruseva BK, Atanasova BD. Selenium Deficiency as a Risk Factor for Development of Anemia. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/jbcr-2017-0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Summary
Anemia is an important public health problem worldwide. Although iron (Fe) deficiency is considered the main factor in the pathogenesis of anemia, only 40-60% of anemia cases are responsive to Fe supplementation. Considerable data exist that other micronutrient deficiencies, such as selenium (Se), could be possible causes of anemia. The issue of Se deficiency as a risk factor for the development of anemia is of particular interest to our country since the Balkan region is known by a low Se content of soils. The aim of the study was to examine the contemporary conception of the influence of Se deficiency on the development of anemia by a review of the scientific literature. Most animal studies have shown a significant relation between Se deficiency and anemia, but one study indicates that there is no impact of Se deficiency on the hematological parameters. Associations of low serum Se with anemia have been found in a number of human studies including subjects of various age groups and pathological conditions. Three possible biological mechanisms have been suggested for the involvement of Se deficiency in the development of anemia: increased oxidative stress, modulation of inflammation through induction of interleukin-6, and increased expression of heme oxygenase-1. A more categorical clarification of the relationships between Se deficiency and development of anemia is needed with respect to appropriate trace element supplementation in cases of anemia with insufficient or absent therapeutic response to Fe treatment.
Collapse
Affiliation(s)
| | | | - Bisera D. Atanasova
- Department of Clinical and Immunological Laboratory , University Hospital “Alexandrovska”, Medical University - Sofia , Bulgaria
| |
Collapse
|
3
|
Ghio AJ, Schreinemachers DM. Heme Oxygenase Activity Correlates with Serum Indices of Iron Homeostasis in Healthy Nonsmokers. Biomark Insights 2016; 11:49-54. [PMID: 27199547 PMCID: PMC4863832 DOI: 10.4137/bmi.s36226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 11/05/2022] Open
Abstract
Heme oxygenase (HO) catalyzes the breakdown of heme to carbon monoxide, iron, and biliverdin. While the use of genetically altered animal models in investigation has established distinct associations between HO activity and systemic iron availability, studies have not yet confirmed such participation of HO in iron homeostasis of humans. Carbon monoxide produced through HO activity will bind to hemoglobin in circulating erythrocytes, and therefore, blood carboxyhemoglobin (COHb) can be used as an index of HO activity. Using the second National Health and Nutrition Examination Survey, we tested the postulate that HO activity correlates with serum indices of iron homeostasis in healthy nonsmokers. The investigation included 844 lifetime nonsmokers (586 females) 18 years of age and older in the study population. Significant correlations were demonstrated between COHb and several indices of iron homeostasis including serum levels of both ferritin and iron and percentage iron saturation of transferrin. There was no significant association between COHb and hemoglobin, the largest repository of heme in the human body, which functions as the substrate for HO. We conclude that HO activity contributes to human iron homeostasis with significant correlations between COHb and serum ferritin and iron levels and percentage iron saturation of transferrin.
Collapse
Affiliation(s)
- Andrew J. Ghio
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC, USA
| | - Dina M. Schreinemachers
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Yoshida T, Ashino T, Kobayashi Y. Chemical-induced coordinated and reciprocal changes in heme metabolism, cytochrome P450 synthesis and others in the liver of humans and rodents. J Toxicol Sci 2016; 41:SP89-SP103. [PMID: 28320986 DOI: 10.2131/jts.41.sp89] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A wide variety of drugs and chemicals have been shown to produce induction and inhibition of heme-metabolizing enzymes, and of drug-metabolizing enzymes, including cytochrome P450s (P450s, CYPs), which consist of many molecular species with lower substrate specificity. Such chemically induced enzyme alterations are coordinately or reciprocally regulated through the same and/or different signal transductions. From the toxicological point of view, these enzymatic changes sometimes exacerbate inherited diseases, such as precipitation of porphyrogenic attacks, although the induction of these enzymes is dependent on the animal species in response to the differences in the stimuli of the liver, where they are also metabolized by P450s. Since P450s are hemoproteins, their induction and/or inhibition by chemical compounds could be coordinately accompanied by heme synthesis and/or inhibition. This review will take a retrospective view of research works carried out in our department and current findings on chemical-induced changes in hepatic heme metabolism in many places, together with current knowledge. Specifically, current beneficial aspects of induction of heme oxygenase-1, a rate-limiting heme degradation enzyme, and its relation to reciprocal and coordinated changes in P450s, with special reference to CYP2A5, in the liver are discussed. Mechanistic studies are also summarized in relation to current understanding on these aspects. Emphasis is also paid to an example of a single chemical compound that could cause various changes by mediating multiple signal transduction systems. Current toxicological studies have been developing by utilizing a sophisticated "omics" technology and survey integrated changes in the tissues produced by the administration of a chemical, even in time- and dose-dependent manners. Toxicological studies are generally carried out step by step to determine and elucidate mechanisms produced by drugs and chemicals. Such approaches are correct; however, current "omics" technology can clarify overall changes occurring in the cells and tissues after treating animals with drugs and chemicals, integrate them and discuss the results. In the present review, we will discuss chemical-induced similar changes of heme synthesis and degradation, and of P450s and finally convergence to similar or different directions.
Collapse
|
5
|
Shibata Y, Inoue S, Igarashi A, Yamauchi K, Abe S, Aida Y, Nunomiya K, Sato M, Nakano H, Sato K, Watanabe T, Konta T, Ueno Y, Kato T, Kayama T, Kubota I. Elevated serum iron is a potent biomarker for spirometric resistance to cigarette smoke among Japanese males: the Takahata study. PLoS One 2013; 8:e74020. [PMID: 24040149 PMCID: PMC3767599 DOI: 10.1371/journal.pone.0074020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/26/2013] [Indexed: 11/19/2022] Open
Abstract
Chronic obstructive pulmonary disease is a common disability among elderly subjects with a heavy cigarette smoking habit. In contrast to the population that is susceptible to smoking, in whom pulmonary function worsens with the length of exposure to cigarette smoke, there are elderly individuals whose pulmonary function is not impaired. However, to date, the characteristics of this resistant smoking population have not been investigated. We aimed to identify a biomarker in individuals in whom lung health is maintained despite smoking. Blood sampling and spirometry were performed on 3,257 subjects who participated in a community-based annual health check in Takahata, Japan, from 2004 to 2006. We selected 117 elderly smokers (age ≥70, Brinkman index ≥600, smoking years ≥30). The 'smoking resistant' group met the following criteria: FEV1/FVC ≥0.7, and FEV1%predicted ≥80. Spirometry was re-evaluated in 147 male, current smokers in 2009. Baseline serum iron (sFe) levels were higher in the smoke resistant group compared with the non-resistant group. In those with low sFe levels, FEV1/FVC was reduced in male subjects. These spirometric measures were positively associated with sFe levels in men. Multiple linear regression analysis revealed that sFe levels were predictive for spirometric values, independent of other clinical factors. In addition, sFe levels were predictive for a decline in FEV1.Serum iron levels may be a biomarker for the spirometric susceptibility of individuals to cigarette smoke.
Collapse
Affiliation(s)
- Yoko Shibata
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Sumito Inoue
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Akira Igarashi
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Keiko Yamauchi
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Shuichi Abe
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Yasuko Aida
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Keiko Nunomiya
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Masamichi Sato
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Hiroshi Nakano
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Kento Sato
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Tuneo Konta
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Yoshiyuki Ueno
- Global Center of Excellence Program Study Group, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Takeo Kato
- Global Center of Excellence Program Study Group, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Takamasa Kayama
- Global Center of Excellence Program Study Group, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Isao Kubota
- Department of Cardiology, Pulmonology and Nephrology, School of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| |
Collapse
|
6
|
Flanagan JM, Steward S, Hankins JS, Howard TM, Neale G, Ware RE. Microarray analysis of liver gene expression in iron overloaded patients with sickle cell anemia and beta-thalassemia. Am J Hematol 2009; 84:328-34. [PMID: 19384939 DOI: 10.1002/ajh.21407] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chronic transfusion therapy is used clinically to supply healthy erythrocytes for patients with sickle cell anemia (SCA) or beta-thalassemia major (TM). Despite the benefits of red blood cell transfusions, chronic transfusions lead to iron accumulation in key tissues such as the heart, liver, and endocrine glands. Transfusion-acquired iron overload is recognized as a cause of morbidity and mortality among patients receiving chronic transfusions. At present, there is little understanding of molecular events that occur during transfusional iron loading and the reasons for the large inter-individual variation observed clinically in transfusion-acquired iron accumulation. To address these issues, we examined whether any liver-expressed genes in SCA or TM patients with transfusional iron overload were associated with the degree of iron accumulation. Specifically, we performed microarray analysis on liver biopsy specimens comparing SCA patients with mild or severe iron overload and also compared SCA with TM patients. Fifteen candidate genes were identified with significantly differential expression between the high and low liver iron concentrations. SCA patients and 20 candidate genes were detected between the SCA and TM patient comparison. Subsequent quantitative PCR experiments validated 12 candidate genes; with GSTM1, eIF5a, SULF2, NTS, and HO-1 being particularly good prospects as genes that might affect the degree of iron accumulation. Future work will determine the baseline expression of these genes prior to transfusional iron overload and elucidate the full impact of these genes on the inter-individual variation observed clinically in transfusion-acquired iron accumulation.
Collapse
Affiliation(s)
- Jonathan M Flanagan
- Department of Hematology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| | | | | | | | | | | |
Collapse
|