1
|
Zhang ZX, Zhao RP, Wang DS, Li YB. Fuzhisan Ameliorates the Memory Deficits in Aged SAMP8 Mice via Decreasing Aβ Production and Tau Hyperphosphorylation of the Hippocampus. Neurochem Res 2016; 41:3074-3082. [DOI: 10.1007/s11064-016-2028-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/07/2016] [Accepted: 08/02/2016] [Indexed: 01/01/2023]
|
2
|
Ma D, Zhu Y, Li Y, Yang C, Zhang L, Li Y, Li L, Zhang L. Beneficial effects of cornel iridoid glycoside on behavioral impairment and senescence status in SAMP8 mice at different ages. Behav Brain Res 2016; 312:20-9. [PMID: 27283974 DOI: 10.1016/j.bbr.2016.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 11/27/2022]
Abstract
The aim of the present study was to investigate the effects of cornel iridoid glycoside (CIG) on behavioral changes and senescent status in senescence-accelerated mouse-prone 8 (SAMP8) mice at different ages (6, 10, and 14 months old). The learning and memory ability, the motor function and the aging conditions of SAMP8 mice were evaluated after CIG treatment in this study. Results showed that intragastrical administration of CIG (100 and 200mg/kg) for two months obviously improved the impaired cognitive ability of SAMP8 mice at the age of 6 months and 10 months, respectively. The treatment with CIG significantly increased the motor function of SAMP8 mice at 10 months and 14 months of age, respectively. CIG also evidently decreased the high grading score of senescence and increased the low surviving rate of SAMP8 mice at the age of 14 months. In addition, CIG treatment inhibited tau hyperphosphorylation in the hippocampus and striatum of SAMP8 mice at different ages. Together, these results indicate that CIG represent a potentially useful treatment for ameliorating the impaired cognitive ability, the motor dysfunction, aging conditions and hyperphosphorylation of tau in aging and age-related neurodegenerative diseases, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Denglei Ma
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Yanqiu Zhu
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Yanzheng Li
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Cuicui Yang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Li Zhang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Yali Li
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lin Li
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.
| | - Lan Zhang
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.
| |
Collapse
|
3
|
Sanchez-Roige S, Lalanza JF, Alvarez-López MJ, Cosín-Tomás M, Griñan-Ferré C, Pallàs M, Kaliman P, Escorihuela RM. Long-term wheel running changes on sensorimotor activity and skeletal muscle in male and female mice of accelerated senescence. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9697. [PMID: 25129573 PMCID: PMC4159468 DOI: 10.1007/s11357-014-9697-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/27/2014] [Indexed: 06/03/2023]
Abstract
The senescence-accelerated mouse prone 8 (SAMP8) is considered a useful non-transgenic model for studying aspects of aging. Using SAM resistant 1 (SAMR1) as controls, the long-term effects of wheel running on skeletal muscle adaptations and behavioral traits were evaluated in senescent (P8) and resistant (R1) male and female mice. Long-term wheel running (WR) led to increases in locomotor activity, benefits in sensorimotor function, and changes in body weight in a gender-dependent manner. WR increased body weight and baseline levels of locomotor activity in female mice and improved balance and strength in male mice, compared to sedentary-control mice. WR resulted in key metabolic adaptations in skeletal muscle, associated with an increased activity of the sirtuin 1-AMP-activated protein kinase (AMPK)-PGC-1 alpha axis and changes in vascular endothelial growth factor A (Vegfa), glucose transporter type 4 (Glut4), and Cluster of Differentiation 36 (Cd36) gene expression. Overall, our data indicate that activity, balance, and strength decrease with age and that long-term WR may significantly improve the motor function in a mouse model of senescence in a gender-dependent manner.
Collapse
Affiliation(s)
| | - Jaume F. Lalanza
- />Institut de Neurociències, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - María Jesús Alvarez-López
- />Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Nucli Universitari de Pedralbes, 08028 Barcelona, Spain
| | - Marta Cosín-Tomás
- />Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Nucli Universitari de Pedralbes, 08028 Barcelona, Spain
| | - Christian Griñan-Ferré
- />Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Nucli Universitari de Pedralbes, 08028 Barcelona, Spain
| | - Merce Pallàs
- />Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, Nucli Universitari de Pedralbes, 08028 Barcelona, Spain
- />Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Perla Kaliman
- />Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Villarroel 170, 08036 Barcelona, Spain
| | - Rosa M. Escorihuela
- />Institut de Neurociències, Departament de Psiquiatria i Medicina Legal, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
4
|
García J, Piñol-Ripoll G, Martínez-Ballarín E, Fuentes-Broto L, Miana-Mena F, Venegas C, Caballero B, Escames G, Coto-Montes A, Acuña-Castroviejo D. Melatonin reduces membrane rigidity and oxidative damage in the brain of SAMP8 mice. Neurobiol Aging 2011; 32:2045-54. [DOI: 10.1016/j.neurobiolaging.2009.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 12/09/2009] [Accepted: 12/17/2009] [Indexed: 12/28/2022]
|
6
|
André A, Chanséaume E, Dumusois C, Cabaret S, Berdeaux O, Chardigny JM. Cerebral plasmalogens and aldehydes in senescence-accelerated mice P8 and R1: a comparison between weaned, adult and aged mice. Brain Res 2006; 1085:28-32. [PMID: 16581039 DOI: 10.1016/j.brainres.2006.02.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 02/10/2006] [Accepted: 02/20/2006] [Indexed: 11/16/2022]
Abstract
In contrast with senescence-accelerated mice R1, SAM P8 show abnormal aging characteristics. Changes occurring during aging could be mainly caused by free radical reactions. The brain is a plasmalogen-rich tissue. These particular phospholipids may act as endogenous antioxidants, be oxidized and release long chain aldehydes and alpha-hydroxyaldehydes during oxidative stress. The aim of this study was to examine by GC/MS the age- and strain-related levels of plasmalogens, aldehydes and alpha-hydroxyaldehydes in brain homogenates of SAM P8 and R1 at weaning, 5 months and 9 months of age in order to better understand the differences between both strains. In SAM R1, the evolution of brain plasmalogen levels corresponded to characteristics of normal aging: an increase from weaned to adult mice followed by a decrease characterizing the normal loss of myelin. By contrast to SAM R1, there was no change in the plasmalogen content in SAM P8 brain. The levels of aldehydes and alpha-hydroxyaldehydes were similar for both strains, they remained constant between adult and aged mice. Specific changes in the aging of SAM P8 were not explained by cerebral levels of these oxidative products. Other mechanisms related to the toxicity of aldehydes and alpha-hydroxyaldehydes could be considered.
Collapse
Affiliation(s)
- A André
- UMR INRA-ENESAD Flaveur, Vision et Comportement du consommateur, 21065 Dijon Cedex, France
| | | | | | | | | | | |
Collapse
|
7
|
Sakakima H, Yoshida Y, Suzuki S, Morimoto N. The Effects of Aging and Treadmill Running on Soleus and Gastrocnemius Muscle Morphology in the Senescence-Accelerated Mouse (SAMP1). ACTA ACUST UNITED AC 2004; 59:1015-21. [PMID: 15528769 DOI: 10.1093/gerona/59.10.b1015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We investigated the effects of aging on the soleus and gastrocnemius muscles in male SAMP1 (senescence-accelerated mouse prone 1). Body mass, muscle wet weight, fiber size, and the percent of type II fibers declined from 50 weeks of age. Voluntary motor behavior also significantly declined with age. Furthermore, we examined the effects of high (twice daily) and low (once daily) frequency treadmill running, for 6 weeks at 5 days per week, beginning when the mice were 50 weeks old. Muscle fiber size for the high frequency running significantly increased. Pathological fiber alterations in these mice were increased by running, especially by high frequency running. This suggests that age-related muscle morphological changes in SAMP1 occurs from 50 weeks of age, and that the decline in voluntary motor behavior is an important factor in aging muscle atrophy. In addition, high frequency running is more beneficial for aged muscle hypertrophy. This model is useful for studying the acceleration of the aging process in skeletal muscle of the SAM.
Collapse
Affiliation(s)
- Harutoshi Sakakima
- School of Health Sciences, Faculty of Medicine, Kagoshima University, Japan.
| | | | | | | |
Collapse
|