Zeng HX, Wang M, Jia F, Lin SJ, Cheng G, Pan WS. Preparation and in vitro release of dual-drug resinate complexes containing codeine and chlorpheniramine.
Drug Dev Ind Pharm 2010;
37:201-7. [PMID:
20653463 DOI:
10.3109/03639045.2010.504724]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE
To develop the dual-drug resinate complexes containing codeine and chlorpheniramine with a novel batch processing, characterize the dual-drug resinate complexes, and study its drug release behavior in vitro.
METHODS
A procedure of simultaneous dual-drug loading using combination solutions composed of different proportions of codeine phosphate and chlorpheniramine maleate was performed to achieve the specific resinate, and the dual-drug loading content was determined by high-performance liquid chromatography method. The dual-drug resinate complexes were characterized by a scanning electron microscope, and the formation mechanisms were confirmed with X-ray diffraction analyses and differential scanning calorimetric analyses. The release behavior of the two drugs from the dual-drug resinate complexes in vitro was studied in the media simulating in vivo environments (simulated gastric fluid: pH = 1.2 HCl, simulated in vivo ionic strength: 0.15 M NaCl, and simulated intestinal fluid: pH = 6.8 buffer solution containing KH2PO4-NaOH).
RESULTS
Scanning electron microscopic analyses proved that the dual-drug resinate complexes had the same appearance and characters as the initiative ion exchange resins (IERs). Via X-ray diffraction and differential scanning calorimetric analyses, it is found that the two drugs in dual-drug resinate complexes were combined with IERs by chemical bond. The drug-resinate complex, like IER, was in amorphous state. More than 90% of codeine phosphate was released in 15 minutes in three different media, whereas little amount of chlorpheniramine maleate was released in all the release time in the medium pH = 1.2 HCl, and the release equilibrium time was about 5 minutes, only 40% was released in the medium 0.15 M NaCl, and the equilibrium time was 40 minutes, and about 90% was released in the medium pH = 6.8 KH2PO4-NaOH. The increased ionic strength generally accelerated the release of the two drugs from the dual-drug resinate complexes.
CONCLUSION
The dual-drug resinate complexes were formed through the reaction between the drugs and the IERs by chemical bond. The release behavior of the drug from the dual-drug resinate complexes in vitro was mainly correlated with the drug molecular structure, the eluting ionic strength, composition, and ionic strength of the release media. The novel dual-drug resinate complexes could be used to deliver two drugs in one therapeutic dose.
Collapse