1
|
Ahn GY, Choi I, Ryu TK, Ryu YH, Oh DH, Kang HW, Kang MH, Choi SW. Continuous production of lipid nanoparticles by multiple-splitting in microfluidic devices with chaotic microfibrous channels. Colloids Surf B Biointerfaces 2023; 224:113212. [PMID: 36822116 DOI: 10.1016/j.colsurfb.2023.113212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 02/22/2023]
Abstract
Polydimethylsiloxane (PDMS) microfluidic devices with chaotic microfibrous channels were fabricated for the continuous production of lipid nanoparticles (LNPs). Electrospun poly(ε-caprolactone) (PCL) microfibrous matrices with different diameters (3.6 ± 0.3, 6.3 ± 0.4, and 12.2 ± 0.8 µm) were used as a template to develop microfibrous channels. The lipid solution (in ethanol) and water phase were introduced into the microfluidic device as the discontinuous and continuous phases, respectively. The smaller diameter of microfibrous channels and the higher flow rate of the continuous phase resulted in the smaller LNPs with a narrower size distribution. The multiple-splitting of the discontinuous phase and the microscale contact between the two phases in the microfibrous channels were the key features of the LNP production in our approach. The LNPs containing doxorubicin with different average sizes (89.7 ± 35.1 and 190.4 ± 66.4 nm) were prepared using the microfluidic devices for the potential application in tumor therapy. In vitro study revealed higher cellular uptake efficiency and cytotoxicity of the smaller LNPs, especially in the HepG2 cells. The microfluidic devices with microfibrous channels can be widely used as a continuous and high-throughput platform for the production of LNPs containing various active agents.
Collapse
Affiliation(s)
- Guk-Young Ahn
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea
| | - Inseong Choi
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea
| | - Tae-Kyung Ryu
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Young-Hyun Ryu
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea
| | - Do-Hyun Oh
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea
| | - Hye-Won Kang
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea
| | - Min-Ho Kang
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea
| | - Sung-Wook Choi
- Biomedical and Chemical Engineering, Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, the Republic of Korea.
| |
Collapse
|
2
|
Paclitaxel Drug Delivery Systems: Focus on Nanocrystals' Surface Modifications. Polymers (Basel) 2022; 14:polym14040658. [PMID: 35215570 PMCID: PMC8875890 DOI: 10.3390/polym14040658] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
Paclitaxel (PTX) is a chemotherapeutic agent that belongs to the taxane family and which was approved to treat various kinds of cancers including breast cancer, ovarian cancer, advanced non-small-cell lung cancer, and acquired immunodeficiency syndrome (AIDS)-related Kaposi’s sarcoma. Several delivery systems for PTX have been developed to enhance its solubility and pharmacological properties involving liposomes, nanoparticles, microparticles, micelles, cosolvent methods, and the complexation with cyclodextrins and other materials that are summarized in this article. Specifically, this review discusses deeply the developed paclitaxel nanocrystal formulations. As PTX is a hydrophobic drug with inferior water solubility properties, which are improved a lot by nanocrystal formulation. Based on that, many studies employed nano-crystallization techniques not only to improve the oral delivery of PTX, but IV, intraperitoneal (IP), and local and intertumoral delivery systems were also developed. Additionally, superior and interesting properties of PTX NCs were achieved by performing additional modifications to the NCs, such as stabilization with surfactants and coating with polymers. This review summarizes these delivery systems by shedding light on their route of administration, the methods used in the preparation and modifications, the in vitro or in vivo models used, and the advantages obtained based on the developed formulations.
Collapse
|
3
|
Merlin JPJ, Li X. Role of Nanotechnology and Their Perspectives in the Treatment of Kidney Diseases. Front Genet 2022; 12:817974. [PMID: 35069707 PMCID: PMC8766413 DOI: 10.3389/fgene.2021.817974] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are differing in particle size, charge, shape, and compatibility of targeting ligands, which are linked to improved pharmacologic characteristics, targetability, and bioavailability. Researchers are now tasked with developing a solution for enhanced renal treatment that is free of side effects and delivers the medicine to the active spot. A growing number of nano-based medication delivery devices are being used to treat renal disorders. Kidney disease management and treatment are currently causing a substantial global burden. Renal problems are multistep processes involving the accumulation of a wide range of molecular and genetic alterations that have been related to a variety of kidney diseases. Renal filtration is a key channel for drug elimination in the kidney, as well as a burgeoning topic of nanomedicine. Although the use of nanotechnology in the treatment of renal illnesses is still in its early phases, it offers a lot of potentials. In this review, we summarized the properties of the kidney and characteristics of drug delivery systems, which affect a drug’s ability should focus on the kidney and highlight the possibilities, problems, and opportunities.
Collapse
Affiliation(s)
- J P Jose Merlin
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
4
|
Duong VA, Nguyen TTL, Maeng HJ. Preparation of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Drug Delivery and the Effects of Preparation Parameters of Solvent Injection Method. Molecules 2020; 25:E4781. [PMID: 33081021 PMCID: PMC7587569 DOI: 10.3390/molecules25204781] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 02/01/2023] Open
Abstract
Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have emerged as potential drug delivery systems for various applications that are produced from physiological, biodegradable, and biocompatible lipids. The methods used to produce SLNs and NLCs have been well investigated and reviewed, but solvent injection method provides an alternative means of preparing these drug carriers. The advantages of solvent injection method include a fast production process, easiness of handling, and applicability in many laboratories without requirement of complicated instruments. The effects of formulations and process parameters of this method on the characteristics of the produced SLNs and NLCs have been investigated in several studies. This review describes the methods currently used to prepare SLNs and NLCs with focus on solvent injection method. We summarize recent development in SLNs and NLCs production using this technique. In addition, the effects of solvent injection process parameters on SLNs and NLCs characteristics are discussed.
Collapse
Affiliation(s)
- Van-An Duong
- Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam;
| | - Thi-Thao-Linh Nguyen
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
| |
Collapse
|
5
|
Preparation of Ondansetron Hydrochloride-Loaded Nanostructured Lipid Carriers Using Solvent Injection Method for Enhancement of Pharmacokinetic Properties. Pharm Res 2019; 36:138. [DOI: 10.1007/s11095-019-2672-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
|
6
|
Ghasemiyeh P, Azadi A, Daneshamouz S, Heidari R, Azarpira N, Mohammadi-Samani S. Cyproterone acetate-loaded nanostructured lipid carriers: effect of particle size on skin penetration and follicular targeting. Pharm Dev Technol 2019; 24:812-823. [DOI: 10.1080/10837450.2019.1596133] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Parisa Ghasemiyeh
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Pharmaceutical Sciences Research center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Daneshamouz
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Center for Nanotechnology in Drug delivery, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Nguyen CN, Tran BN, Do TT, Nguyen H, Nguyen TN. D-Optimal Optimization and Data-Analysis Comparison Between a DoE Software and Artificial Neural Networks of a Chitosan Coating Process onto PLGA Nanoparticles for Lung and Cervical Cancer Treatment. J Pharm Innov 2018. [DOI: 10.1007/s12247-018-9345-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Eldem T, Eldem B. Ocular Drug, Gene and Cellular Delivery Systems and Advanced Therapy Medicinal Products. Turk J Ophthalmol 2018; 48:132-141. [PMID: 29988818 PMCID: PMC6032955 DOI: 10.4274/tjo.32458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/28/2017] [Indexed: 12/19/2022] Open
Abstract
Due to recent advances in science and technology, when the products used in therapy are examined, ophthalmology has a priority in terms of research and development, preclinical and clinical studies of innovative drugs, medical devices and drug-medical device combination products. Liposomes, micelles, nanoemulsions, nanoparticles with colloidal structures and intraocular implants as sustained-release drug delivery systems have been developed to overcome the barriers to ocular applications, increase absorption, decrease metabolism and elimination and increase the residence time in ocular tissues and compartments. Studies are also ongoing in the area of advanced therapies using gene or cell-based systems which are high-risk products due to their complex structures. In this review, ocular drug, gene and cellular delivery systems and related products and developments in advanced therapy medicinal products are presented in respect to the definition of drug (medicinal product) and current changes in legislation.
Collapse
Affiliation(s)
- Türkan Eldem
- Hacettepe University Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, Ankara, Turkey.,Hacettepe University Institute of Health Sciences, Department of Stem Cell Sciences, Ankara, Turkey
| | - Bora Eldem
- Hacettepe University Faculty of Medicine, Department of Ophthalmology, Ankara, Turkey.,Hacettepe University Institute of Health Sciences, Department of Stem Cell Sciences, Ankara, Turkey
| |
Collapse
|
9
|
Wang F, Porter M, Konstantopoulos A, Zhang P, Cui H. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J Control Release 2017; 267:100-118. [PMID: 28958854 PMCID: PMC5723209 DOI: 10.1016/j.jconrel.2017.09.026] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022]
Abstract
Paclitaxel (PTX) is one of the most successful drugs ever used in cancer chemotherapy, acting against a variety of cancer types. Formulating PTX with Cremophor EL and ethanol (Taxol®) realized its clinical potential, but the formulation falls short of expectations due to side effects such as peripheral neuropathy, hypotension, and hypersensitivity. Abraxane®, the albumin bound PTX, represents a superior replacement of Taxol® that mitigates the side effects associated with Cremophor EL. While Abraxane® is now considered a gold standard in chemotherapy, its 21% response rate leaves much room for further improvement. The quest for safer and more effective cancer treatments has led to the development of a plethora of innovative PTX formulations, many of which are currently undergoing clinical trials. In this context, we review recent development of PTX drug delivery systems and analyze the design principles underpinning each delivery strategy. We chose several representative examples to highlight the opportunities and challenges of polymeric systems, lipid-based formulations, as well as prodrug strategies.
Collapse
Affiliation(s)
- Feihu Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Michael Porter
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Alexandros Konstantopoulos
- Department of Biomedical Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Pengcheng Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, United States; Institute for NanoBiotechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
10
|
Afrooz H, Ahmadi F, Fallahzadeh F, Mousavi-Fard SH, Alipour S. Design and characterization of paclitaxel-verapamil co-encapsulated PLGA nanoparticles: Potential system for overcoming P-glycoprotein mediated MDR. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Tran BN, Nguyen HT, Kim JO, Yong CS, Nguyen CN. Developing combination of artesunate with paclitaxel loaded into poly-d,l-lactic-co-glycolic acid nanoparticle for systemic delivery to exhibit synergic chemotherapeutic response. Drug Dev Ind Pharm 2017; 43:1952-1962. [DOI: 10.1080/03639045.2017.1357729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bao Ngoc Tran
- Department of Pharmaceutical Industry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Chien Ngoc Nguyen
- Department of Pharmaceutical Industry, Hanoi University of Pharmacy, Hanoi, Vietnam
- National Institute of Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi, Vietnam
| |
Collapse
|
12
|
Development of Safe and Potent Oil-in-Water Emulsion of Paclitaxel to Treat Peritoneal Dissemination. J Pharm Sci 2017; 106:1143-1148. [DOI: 10.1016/j.xphs.2016.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/18/2016] [Accepted: 12/16/2016] [Indexed: 11/18/2022]
|
13
|
Paulo F, Santos L. Design of experiments for microencapsulation applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1327-1340. [PMID: 28532010 DOI: 10.1016/j.msec.2017.03.219] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/07/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023]
Abstract
Microencapsulation techniques have been intensively explored by many research sectors such as pharmaceutical and food industries. Microencapsulation allows to protect the active ingredient from the external environment, mask undesired flavours, a possible controlled release of compounds among others. The purpose of this review is to provide a background of design of experiments in microencapsulation research context. Optimization processes are required for an accurate research in these fields and therefore, the right implementation of micro-sized techniques at industrial scale. This article critically reviews the use of the response surface methodologies in pharmaceutical and food microencapsulation research areas. A survey of optimization procedures in the literature, in the last few years is also presented.
Collapse
Affiliation(s)
- Filipa Paulo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
14
|
Zhang W, Yang Y, Lv T, Fan Z, Xu Y, Yin J, Liao B, Ying H, Ravichandran N, Du Q. Sucrose esters improve the colloidal stability of nanoethosomal suspensions of (-)-epigallocatechin gallate for enhancing the effectiveness against UVB-induced skin damage. J Biomed Mater Res B Appl Biomater 2016; 105:2416-2425. [PMID: 27618624 DOI: 10.1002/jbm.b.33785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 08/15/2016] [Accepted: 08/28/2016] [Indexed: 11/11/2022]
Abstract
Nanoethosomal suspensions, composed of phospholipids, ethanol, and water, are novel lipid carriers. These suspensions have been reported to enhance the permeation of drugs into the skin as a result of the interdigitation effect of ethanol on the lipid bilayer of liposomes and by increasing the fluidity of lipids in the stratum corneum. The physical stability of the nanoethosomal suspension is still a critical research problem until now. This study investigated the commercial palm sucrose esters to improve the colloidal stability of nanoethosomal suspensions. The results indicated that palm sucrose esters (PSE) were effective for stabilizing nanoethosomal suspension of (-)-epigallocatechin gallate (EGCG) from green tea. A PSE concentration of 0.15% was optimal for a nanoethosomal suspension which gave mean diameter 75.5 ± 3.5 nm, zeta potential -30.8 ± 3.2 mV and polydispersity index 0.207 ± 0.017. Moreover, the effectiveness of stabilization was influenced by the degree of esterification of the sucrose esters: the sucrose polyesters could prolong the stability of nanoethosomes loaded with EGCG to a year, but the sucrose monoesters only provided less than 6 months of stabilization. EGCG nanoethosomal suspension stabilized by sucrose polyesters shows better inhibition effectiveness against UVB-induced skin damage than native EGCG. The nanoethosomal suspension has the potential for its utilization as skin care and other products. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2416-2425, 2017.
Collapse
Affiliation(s)
- Weihua Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Yuanyuan Yang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Tao Lv
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Zhaoyang Fan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Yongquan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Junfeng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, 310008, China
| | - Bingwu Liao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Hao Ying
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Nagaiya Ravichandran
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| | - Qizhen Du
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences, Zhejiang A & F University, Linan, 311300, China
| |
Collapse
|
15
|
Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm 2015; 496:173-90. [DOI: 10.1016/j.ijpharm.2015.10.057] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022]
|
16
|
In vitro and in vivo targeting effect of folate decorated paclitaxel loaded PLA-TPGS nanoparticles. Saudi Pharm J 2015; 23:683-8. [PMID: 26702264 PMCID: PMC4669427 DOI: 10.1016/j.jsps.2015.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/20/2015] [Indexed: 11/21/2022] Open
Abstract
Paclitaxel is one of the most effective chemotherapeutic agents for treating various types of cancer. However, the clinical application of paclitaxel in cancer treatment is considerably limited due to its poor water solubility and low therapeutic index. Thus, it requires an urgent solution to improve therapeutic efficacy of paclitaxel. In this study, folate decorated paclitaxel loaded PLA–TPGS nanoparticles were prepared by a modified emulsification/solvent evaporation method. The obtained nanoparticles were characterized by Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared (FTIR) and Dynamic Light Scattering (DLS) method. The spherical nanoparticles were around 50 nm in size with a narrow size distribution. Targeting effect of nanoparticles was investigated in vitro on cancer cell line and in vivo on tumor bearing nude mouse. The results indicated the effective targeting of folate decorated paclitaxel loaded copolymer nanoparticles on cancer cells both in vitro and in vivo.
Collapse
|
17
|
Das S, Ng WK, Tan RBH. Sucrose ester stabilized solid lipid nanoparticles and nanostructured lipid carriers. I. Effect of formulation variables on the physicochemical properties, drug release and stability of clotrimazole-loaded nanoparticles. NANOTECHNOLOGY 2014; 25:105101. [PMID: 24531790 DOI: 10.1088/0957-4484/25/10/105101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The objective of this study was to develop and evaluate solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) utilizing sucrose ester as a stabilizer/emulsifier for the controlled release of drug/active. Both SLNs and NLCs were prepared using different sugar esters to screen out the most suitable stabilizer. Clotrimazole was used as a model active/drug. The effect of different formulation variables on the particle size, polydispersity index and drug encapsulation efficiency of SLNs and NLCs was evaluated and compared. SLNs and NLCs were physicochemically characterized and compared using Cryo-SEM, DSC and XRD. Furthermore, a drug release study of SLNs and NLCs was conducted. Finally, physicochemical stability (size, PI, ZP, EE) of the SLNs and NLCs was checked at 25 ± 2 °C and at 2-8 °C. Among the sucrose esters, D-1216 was found to be most suitable for both SLNs and NLCs. Formulation variables exhibited a significant impact on size, PI and EE of the nanoparticles. SLNs with ∼120 nm size, ∼0.23 PI, ∼I26I mV ZP, ∼87% EE and NLCs with ∼160 nm size, 0.15 PI, ∼I26I mV ZP, ∼88% EE were produced. Cryo-SEM revealed spherical particles with a smooth surface but did not exhibit any difference in surface morphology between SLNs and NLCs. DSC and XRD results demonstrated the disappearance of clotrimazole peak(s) in drug-loaded SLNs and NLCs. Faster drug release was observed from SLNs than NLCs. NLCs were found to be more stable than SLNs in terms of size, PI, EE and drug release. The results indicated that both SLNs and NLCs stabilized with sucrose ester D-1216 can be used as controlled release carriers although NLCs have an edge over SLNs.
Collapse
Affiliation(s)
- Surajit Das
- Institute of Chemical and Engineering Sciences, A*STAR (Agency for Science, Technology and Research), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | | | | |
Collapse
|
18
|
Tang S, Gao D, Zhao T, Zhou J, Zhao X. An evaluation of the anti-tumor efficacy of oleanolic acid-loaded PEGylated liposomes. NANOTECHNOLOGY 2013; 24:235102. [PMID: 23670283 DOI: 10.1088/0957-4484/24/23/235102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The effective delivery of oleanolic acid (OA) to the target site has several benefits in therapy for different pathologies. However, the delivery of OA is challenging due to its poor aqueous solubility. The study aims to evaluate the tumor inhibition effect of the PEGylated OA nanoliposome on the U14 cervical carcinoma cell line. In our previous study, OA was successfully encapsulated into PEGylated liposome with the modified ethanol injection method. Oral administration of PEGylated OA liposome was demonstrated to be more efficient in inhibiting xenograft tumors. The results of organ index indicated that PEG liposome exhibited higher anti-tumor activity and lower cytotoxicity. It was also found that OA and OA liposomes induced tumor cell apoptosis detected by flow cytometry. Furthermore, effects of OA on the morphology of tumor and other tissues were observed by hematoxylin and eosin staining. The histopathology sections did not show pathological changes in kidney or liver in tested mice. In contrast, there was a significant difference in tumor tissues between treatment groups and the negative control group. These observations imply that PEGylated liposomes seem to have advantages for cancer therapy in terms of effective delivery of OA.
Collapse
Affiliation(s)
- Shengnan Tang
- Applied Chemical Key Lab of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, No. 438 Hebei Street, Qinhuangdao 066004, People's Republic of China
| | | | | | | | | |
Collapse
|
19
|
Amini-Fazl MS, Mobedi H, Barzin J. Investigation of aqueous stability of taxol in different release media. Drug Dev Ind Pharm 2013; 40:519-26. [PMID: 23594296 DOI: 10.3109/03639045.2013.771646] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the present study, the aqueous stability of taxol in different aqueous media and immiscible aqueous/organic systems at 37 °C was investigated. The aqueous media included phosphate buffered saline (PBS) and PBS containing 10% methanol, 10% ethanol, 10% hydroxypropyl β-cyclodextrin (HP-βCD), 1% sodium citrate and 1% Tween 80. The immiscible systems consisted of PBS/octanol, PBS/dichloromethane, PBS/chloroform and PBS/ethyl acetate. The concentrations of taxol and related derivatives in each of the media were determined through the high-performance liquid chromatography assay. Results showed that hydrolysis and epimerization were two major types of degradation for taxol in the aqueous media starting from the initial hours of contact (6 hours). Addition of Tween 80 to PBS moderately increased the aqueous stability of taxol. As well, using PBS containing 10% HP-βCD inhibited the taxol hydrolysis, while epimerization still in process. In the case of immiscible systems, except for PBS/ethyl acetate system, no evidences of taxol hydrolysis were observed. Meanwhile, epimerization of taxol in PBS/dichloromethane and PBS/chloroform systems underwent due to the ability of C-Cl bonds to form hydrogen bonding with the hydroxyl group of C7 of taxol.
Collapse
|
20
|
Abstract
Paclitaxel is one of the most effective chemotherapeutic drugs ever developed and is active against a broad range of cancers, such as lung, ovarian, and breast cancers. Due to its low water solubility, paclitaxel is formulated in a mixture of Cremophor EL and dehydrated ethanol (50:50, v/v) a combination known as Taxol. However, Taxol has some severe side effects related to Cremophor EL and ethanol. Therefore, there is an urgent need for the development of alternative Taxol formulations. The encapsulation of paclitaxel in biodegradable and non-toxic nano-delivery systems can protect the drug from degradation during circulation and in-turn protect the body from toxic side effects of the drug thereby lowering its toxicity, increasing its circulation half-life, exhibiting improved pharmacokinetic profiles, and demonstrating better patient compliance. Also, nanoparticle-based delivery systems can take advantage of the enhanced permeability and retention (EPR) effect for passive tumor targeting, therefore, they are promising carriers to improve the therapeutic index and decrease the side effects of paclitaxel. To date, paclitaxel albumin-bound nanoparticles (Abraxane®) have been approved by the FDA for the treatment of metastatic breast cancer and non-small cell lung cancer (NSCLC). In addition, there are a number of novel paclitaxel nanoparticle formulations in clinical trials. In this comprehensive review, several types of developed paclitaxel nano-delivery systems will be covered and discussed, such as polymeric nanoparticles, lipid-based formulations, polymer conjugates, inorganic nanoparticles, carbon nanotubes, nanocrystals, and cyclodextrin nanoparticles.
Collapse
Affiliation(s)
- Ping Ma
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
21
|
Feng L, Mumper RJ. A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett 2012; 334:157-75. [PMID: 22796606 DOI: 10.1016/j.canlet.2012.07.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 07/04/2012] [Indexed: 12/24/2022]
Abstract
Nano-based delivery systems have attracted a great deal of attention in the past two decades as a strategy to overcome the low therapeutic index of conventional anticancer drugs and delivery barriers in solid tumors. Myriads of preclinical studies have been focused on developing nano-based formulations to effectively deliver taxanes, one of the most important and most prescribed anticancer drug types in the clinic. Given the hydrophobic property of taxanes, lipid-based NPs, serve as a viable alternative delivery system. This critical review will provide an overview and perspective of the advancement of lipid-based nanoparticles for taxane delivery. Currently available formulations of taxanes and their drawbacks as well as criteria for idea taxane delivery system will be discussed.
Collapse
Affiliation(s)
- Lan Feng
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
22
|
Gao D, Tang S, Tong Q. Oleanolic acid liposomes with polyethylene glycol modification: promising antitumor drug delivery. Int J Nanomedicine 2012; 7:3517-26. [PMID: 22848175 PMCID: PMC3405888 DOI: 10.2147/ijn.s31725] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Oleanolic acid is a pentacyclic triterpene present in many fruits and vegetables, and has received much attention on account of its biological properties. However, its poor solubility and low bioavailability limit its use. The objective of this study was to encapsulate oleanolic acid into nanoliposomes using the modified ethanol injection method. METHODS The liposomes contain a hydrophobic oleanolic acid core, an amphiphilic soybean lecithin monolayer, and a protective hydrophilic polyethylene glycol (PEG) coating. During the preparation process, the formulations described were investigated by designing 3⁴ orthogonal experiments as well as considering the effects of different physical characteristics. The four factors were the ratios of drug to soybean phosphatidylcholine (w/w), cholesterol (w/w), PEG-2000 (w/w), and temperature of phosphate-buffered saline at three different levels. We identified the optimized formulation which showed the most satisfactory lipid stability and particle formation. The morphology of the liposomes obtained was determined by transmission electron microscopy and atomic force microscopy. The existence of PEG in the liposome component was validated by Fourier transform infrared spectrum analysis. RESULTS The PEGylated liposomes dispersed individually and had diameters of around 110-200 nm. Encapsulation efficiency was more than 85%, as calculated by high-performance liquid chromatography and Sephadex® gel filtration. Furthermore, when compared with native oleanolic acid, the liposomal formulations showed better stability in vitro. Finally, the cytotoxicity of the oleanolic acid liposomes was evaluated using a microtiter tetrazolium assay. CONCLUSION These results suggest that PEGylated liposomes would serve as a potent delivery vehicle for oleanolic acid in future cancer therapy.
Collapse
Affiliation(s)
- Dawei Gao
- Applied Chemical Key Laboratory of Hebei Province, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China.
| | | | | |
Collapse
|
23
|
Szűts A, Szabó-Révész P. Sucrose esters as natural surfactants in drug delivery systems--a mini-review. Int J Pharm 2012; 433:1-9. [PMID: 22575672 DOI: 10.1016/j.ijpharm.2012.04.076] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 04/27/2012] [Accepted: 04/28/2012] [Indexed: 10/28/2022]
Abstract
Sucrose esters (SEs) are widely used in the food and cosmetic industries and there has recently been great interest in their applicability in different pharmaceutical fields. They are natural and biodegradable excipients with well-known emulsifying and solubilizing behavior. Currently the most common pharmaceutical applications of SEs are for the enhancement of drug dissolution and drug absorption/permeation, and in controlled-release systems. Although the number of articles on SEs is continuously increasing, they have not yet been widely used in the pharmaceutical industry. The aim of this review is to discuss and summarize some of the findings and applications of SEs in different areas of drug delivery. The article highlights the main properties of SEs and focuses on their use in pharmaceutical technology and on their regulatory and toxicological status.
Collapse
Affiliation(s)
- Angéla Szűts
- Department of Pharmaceutical Technology, University of Szeged, H-6720, Szeged, Eötvös u. 6, Hungary
| | | |
Collapse
|
24
|
Araki T, Kono Y, Ogawara KI, Watanabe T, Ono T, Kimura T, Higaki K. Formulation and Evaluation of Paclitaxel-Loaded Polymeric Nanoparticles Composed of Polyethylene Glycol and Polylactic Acid Block Copolymer. Biol Pharm Bull 2012; 35:1306-13. [DOI: 10.1248/bpb.b12-0020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomoya Araki
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Yusuke Kono
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Ken-ichi Ogawara
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Takaichi Watanabe
- Department of Material and Energy Science, Graduate School of Environmental Science, Okayama University
| | - Tsutomu Ono
- Department of Material and Energy Science, Graduate School of Environmental Science, Okayama University
| | - Toshikiro Kimura
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Kazutaka Higaki
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
25
|
PEG liposomalization of paclitaxel improved its in vivo disposition and anti-tumor efficacy. Int J Pharm 2011; 412:132-41. [DOI: 10.1016/j.ijpharm.2011.04.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 02/25/2011] [Accepted: 04/03/2011] [Indexed: 11/23/2022]
|
26
|
Li W, Das S, Ng KY, Heng PWS. Formulation, biological and pharmacokinetic studies of sucrose ester-stabilized nanosuspensions of oleanolic Acid. Pharm Res 2011; 28:2020-33. [PMID: 21479757 DOI: 10.1007/s11095-011-0428-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 03/08/2011] [Indexed: 12/17/2022]
Abstract
PURPOSE The aim of this study was to develop sucrose ester (SE)-stabilized oleanolic acid (OA) nanosuspensions (NS) for enhanced delivery. METHODS SEOA NS were prepared via O/W emulsion and organic solvent evaporation methods. The particles' size and polydispersity index were measured by nanosizer. Their percent encapsulation efficiency, saturation solubility and in vitro dissolution rate were obtained via HPLC. The in vitro bioefficacy was analyzed by MTT measurements in A549 human non-small-cell lung cancer cell line. The cellular uptake of OA and in vivo pharmacokinetics profile were determined using LC-ESI-MS/MS. RESULTS Spherical SEOA NS particles (~100 nm in diameter) were produced and found to be physicochemically stable over a month at 4°C. In particular, SEOA 4121 NS (SEL: SEP at 4:1 w/w; SE: OA at 2:1 w/w) produced the greatest increase in saturation solubility (1.89 mg/mL vs. 3.43 μg/mL), dissolution rate, cytotoxicity and bioavailability. Preliminary studies indicated that cellular uptake of SEOA NS by A549 cells was temperature-, concentration- and time-dependent. CONCLUSION Preparing OA as SE-stabilized NS particles provides a novel method to enhance saturation solubility, in vitro dissolution rate, bioefficacy and in vivo bioavailability of free OA and/or other potentially useful hydrophobic drugs.
Collapse
Affiliation(s)
- Wenji Li
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | | | | | | |
Collapse
|
27
|
Kollipara S, Bende G, Movva S, Saha R. Application of rotatable central composite design in the preparation and optimization of poly(lactic-co-glycolic acid) nanoparticles for controlled delivery of paclitaxel. Drug Dev Ind Pharm 2011; 36:1377-87. [PMID: 20545520 DOI: 10.3109/03639045.2010.487263] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Polymeric carrier systems of paclitaxel (PCT) offer advantages over only available formulation Taxol® in terms of enhancing therapeutic efficacy and eliminating adverse effects. OBJECTIVE The objective of the present study was to prepare poly (lactic-co-glycolic acid) nanoparticles containing PCT using emulsion solvent evaporation technique. METHODS Critical factors involved in the processing method were identified and optimized by scientific, efficient rotatable central composite design aiming at low mean particle size and high entrapment efficiency. Twenty different experiments were designed and each formulation was evaluated for mean particle size and entrapment efficiency. The optimized formulation was evaluated for in vitro drug release, and absorption characteristics were studied using in situ rat intestinal permeability study. RESULTS Amount of polymer and duration of ultrasonication were found to have significant effect on mean particle size and entrapment efficiency. First-order interactions of amount of miglyol with amount of polymer were significant in case of mean particle size, whereas second-order interactions of polymer were significant in mean particle size and entrapment efficiency. The developed quadratic model showed high correlation (R(2) > 0.85) between predicted response and studied factors. The optimized formulation had low mean particle size (231.68 nm) and high entrapment efficiency (95.18%) with 4.88% drug content. The optimized formulation showed controlled release of PCT for more than 72 hours. In situ absorption study showed faster and enhanced extent of absorption of PCT from nanoparticles compared to pure drug. CONCLUSION The poly (lactic-co-glycolic acid) nanoparticles containing PCT may be of clinical importance in enhancing its oral bioavailability.
Collapse
Affiliation(s)
- Sivacharan Kollipara
- Formulation Development & Pharmacokinetics Laboratory, Pharmacy Group, Birla Institute of Technology & Science, Pilani, Rajasthan, India
| | | | | | | |
Collapse
|
28
|
Ajazuddin, Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia 2010; 81:680-9. [PMID: 20471457 DOI: 10.1016/j.fitote.2010.05.001] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 04/28/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
Abstract
Over the past several years, great advances have been made on development of novel drug delivery systems (NDDS) for plant actives and extracts. The variety of novel herbal formulations like polymeric nanoparticles, nanocapsules, liposomes, phytosomes, nanoemulsions, microsphere, transferosomes, and ethosomes has been reported using bioactive and plant extracts. The novel formulations are reported to have remarkable advantages over conventional formulations of plant actives and extracts which include enhancement of solubility, bioavailability, protection from toxicity, enhancement of pharmacological activity, enhancement of stability, improved tissue macrophages distribution, sustained delivery, and protection from physical and chemical degradation. The present review highlights the current status of the development of novel herbal formulations and summarizes their method of preparation, type of active ingredients, size, entrapment efficiency, route of administration, biological activity and applications of novel formulations.
Collapse
Affiliation(s)
- Ajazuddin
- University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, C.G., 492010, India
| | | |
Collapse
|
29
|
Bayindir ZS, Yuksel N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J Pharm Sci 2010; 99:2049-60. [PMID: 19780133 DOI: 10.1002/jps.21944] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nonionic surfactant based vesicles (niosomes) are novel drug delivery systems formed from the self-assembly of nonionic amphiphiles in aqueous media. In the present study niosomal formulations of Paclitaxel (PCT), an antineoplastic agent, were prepared using different surfactants (Tween 20, 60, Span 20, 40, 60, Brij 76, 78, 72) by film hydration method. PCT was successfully entrapped in all of the formulations with encapsulation efficiencies ranging between 12.1 +/- 1.36% and 96.6 +/- 0.482%. Z-average sizes of the niosomes were between 229.3 and 588.2 nm. Depending on the addition of the negatively charged dicetyl phosphate to the formulations negative zeta potential values were obtained. High surface charges showed that niosomes can be suspended in water well and this is beneficial for their storage and administration. PCT released from niosomes by a diffusion controlled mechanism. The slow release observed from these formulations might be beneficial for reducing the toxic side effects of PCT. The niosome preparation method was found to be repeatable in terms of size distribution, zeta potential and % drug loading values. The efficiency of niosomes to protect PCT against gastrointestinal enzymes (trypsin, chymotrypsin, and pepsin) was also evaluated for PCT oral delivery. Among all formulations, gastrointestinal stability of PCT was well preserved with Span 40 niosomes.
Collapse
Affiliation(s)
- Zerrin Sezgin Bayindir
- Department of Pharmaceutical Technology, School of Pharmacy, Ankara University, Tandogan, Ankara, Turkey
| | | |
Collapse
|
30
|
Takegami S, Takara K, Tanaka S, Yamamoto K, Hori M, Yokoyama T, Kitade T. Characterization,in vitrocytotoxicity and cellular accumulation of paclitaxel-loaded lipid nano-emulsions. J Microencapsul 2010; 27:453-9. [DOI: 10.3109/02652040903515482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Liu K, Sun J, Wang Y, He Y, Gao K, He Z. Preparation and Characterization of 10-Hydroxycamptothecin Loaded Nanostructured Lipid Carriers. Drug Dev Ind Pharm 2008; 34:465-71. [DOI: 10.1080/03639040701662230] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Yen FL, Wu TH, Lin LT, Cham TM, Lin CC. Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats. Food Chem Toxicol 2008; 46:1771-7. [PMID: 18308443 DOI: 10.1016/j.fct.2008.01.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 12/17/2007] [Accepted: 01/10/2008] [Indexed: 02/05/2023]
Abstract
Cuscuta chinensis is a commonly used traditional Chinese medicine to nourish the liver and kidney. Due to the poor water solubility of its major constituents such as flavonoids and lignans, its absorption upon oral administration could be limited. The purpose of the present study was to use the nanosuspension method to prepare C. chinensis nanoparticles (CN), and to compare the hepatoprotective and antioxidant effects of C. chinensis ethanolic extract (CE) and CN on acetaminophen-induced hepatotoxicity in rats. An oral dose of CE at 125 and 250 mg/kg and CN at 25 and 50mg/kg showed a significant hepatoprotective effect relatively to the same extent (P<0.05) by reducing levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase. These biochemical assessments were supported by rat hepatic biopsy examinations. In addition, the antioxidant activities of CE and CN both significantly increased superoxide dismutase, catalase, glutathione peroxidase, and reduced malondialdehyde (P<0.05). Moreover, the results also indicated that the hepatoprotective and antioxidant effects of 50 mg/kg CN was effectively better than 125 mg/kg CE (P<0.05), and an oral dose of CN that is five times as less as CE could exhibit similar levels of outcomes. In conclusion, we suggest that the nanoparticles system can be applied to overcome other water poorly soluble herbal medicines and furthermore to decrease the treatment dosage.
Collapse
Affiliation(s)
- Feng-Lin Yen
- Graduate Institute of Pharmaceutical Sciences, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
33
|
Ye J, Liu AL. Chapter 6 Functionalization of Carbon Nanotubes and Nanoparticles with Lipid. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1554-4516(08)00206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|