1
|
Li L, Jiang J, Yao Z, Zhu B. Recent advances in the production, properties and applications of alginate oligosaccharides - a mini review. World J Microbiol Biotechnol 2023; 39:207. [PMID: 37221433 DOI: 10.1007/s11274-023-03658-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/20/2023] [Indexed: 05/25/2023]
Abstract
Alginate oligosaccharides (AOS) made from the degradation of alginate, to some extent, makes up for the poor solubility and bioavailability of alginate as a macromolecular substance and possess several beneficial biological activities that are absent in alginate. These properties include prebiotic, glycolipid regulatory, immunomodulatory, antimicrobial, antioxidant, anti-tumor, promoting plant growth and other activities. Consequently, AOS has significant potential for use in the agricultural, biomedical, and food industries, and has been the focus of research in the field of marine biological resources. This review comprehensively covers methods (physical, chemical, and enzymatic methods) for the production of AOS from alginate. More importantly, this paper reviews recent advances in the biological activity and potentially industrial and therapeutic applications of AOS, providing a reference for future research and applications of AOS.
Collapse
Affiliation(s)
- Li Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Jinju Jiang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao, 266400, China
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
2
|
Veronica N, Heng PWS, Liew CV. Alginate-based matrix tablets for drug delivery. Expert Opin Drug Deliv 2023; 20:115-130. [PMID: 36503355 DOI: 10.1080/17425247.2023.2158183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION As a nature-derived polymer with swelling and gelling properties, alginate has found wide biopharma-relevant applications. However, there is comparatively limited attention on alginate in tablet formulations. Therefore, this review aimed to provide an overview of the applications of alginate in solid dosage form formulations. AREAS COVERED This review outlines the role of alginate for oral sustained release formulations. For better insights into its application in drug delivery, the mechanisms of drug release from alginate matrices are discussed alongside the alginate inherent properties and drug properties. Specifically, the influence of alginate properties and formulation components on the resultant alginate gel and subsequent drug release is reviewed. Modifications of the alginate to improve its properties in modulating drug release are also discussed. EXPERT OPINION Alginate-based matrix tablets is useful for sustaining drug release. As a nature-derived polymer, batch consistency and stability raise some concerns about employing alginate in formulations. Furthermore, the alginate gel properties can be affected by formulation components, pH of the dissolution environment and the tablet matrix micro-environment pH. Conscientious efforts are pivotal to addressing these formulation challenges to increase the utilization of alginate in oral solid dosage forms.
Collapse
Affiliation(s)
- Natalia Veronica
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, 117543, Singapore, Singapore
| | - Paul Wan Sia Heng
- GEA-NUS Pharmaceutical Processing Research Laboratory, Department of Pharmacy, National University of Singapore, 18 Science Drive 4, 117543, Singapore, Singapore
| | - Celine Valeria Liew
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Malaysia
| |
Collapse
|
3
|
El Hariri El Nokab M, Lasorsa A, Sebakhy KO, Picchioni F, van der Wel PC. Solid-state NMR spectroscopy insights for resolving different water pools in alginate hydrogels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
4
|
Effects of Formulation on the Palatability and Efficacy of In-Feed Praziquantel Medications for Marine Finfish Aquaculture. Mar Drugs 2022; 20:md20050323. [PMID: 35621974 PMCID: PMC9144810 DOI: 10.3390/md20050323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 12/10/2022] Open
Abstract
Praziquantel (PZQ) provides an effective treatment against monogenean parasitic infestations in finfish. However, its use as an in-feed treatment is challenging due to palatability issues. In this study, five formulations of PZQ beads (1−4 mm) were developed using marine-based polymers, with allicin added as a flavouring agent. All formulations attained PZQ loading rates ≥74% w/w, and the beads were successfully incorporated into fish feed pellets at an active dietary inclusion level of 10 g/kg. When tested for palatability and digestibility in small yellowtail kingfish, the PZQ-loaded beads produced with alginate-chitosan, alginate-Cremophor® RH40, and agar as carriers resulted in high consumption rates of 99−100% with no digesta or evidence of beads in the gastrointestinal tract (GIT) of fish fed with diets containing either formulation. Two formulations produced using chitosan-based carriers resulted in lower consumption rates of 68−75%, with undigested and partly digested beads found in the fish GIT 3 h post feeding. The PZQ-loaded alginate-chitosan and agar beads also showed good palatability in large (≥2 kg) yellowtail kingfish infected with gill parasites and were efficacious in removing the parasites from the fish, achieving >90% reduction in mean abundance relative to control fish (p < 0.001). The two effective formulations were stable upon storage at ambient temperature for up to 18 months, showing residual drug content >90% compared with baseline levels. Overall, the palatability, efficacy and stability data collected from this study suggest that these two PZQ particulate formulations have potential applications as in-feed anti-parasitic medications for the yellowtail kingfish farming industry.
Collapse
|
5
|
Sanchez-Ballester NM, Bataille B, Soulairol I. Sodium alginate and alginic acid as pharmaceutical excipients for tablet formulation: Structure-function relationship. Carbohydr Polym 2021; 270:118399. [PMID: 34364633 DOI: 10.1016/j.carbpol.2021.118399] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022]
Abstract
Alginic acid and its sodium salt are well-accepted pharmaceutical excipients fulfilling several roles in the development of solid oral dosage forms. Although they have attractive advantages as safety, abundance, relatively low cost and biodegradability, these natural polysaccharides possess a high variability that may limit their use as excipients for tablet formulation. Thus, to obtain robust formulations and high-quality drug products with consistent performance a complete understanding of the structure-property relationship becomes necessary as the structure of alginates affects both, technological and biopharmaceutical properties. This review compiles the compaction studies carried out that relate the structure of alginates to their mechanical and dissolution performances. The different analytical methods used to determine the chemical composition, primary structure and molecular weight distribution, major factors affecting the behavior of alginates in direct compression, are also exposed. Finally, different strategies reported to improve the properties of alginic acid as direct compression excipient are discussed.
Collapse
Affiliation(s)
| | - Bernard Bataille
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Ian Soulairol
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| |
Collapse
|
6
|
Park RM, Nguyen NHT, Lee SM, Kim YH, Min J. Alginate oligosaccharides can maintain activities of lysosomes under low pH condition. Sci Rep 2021; 11:11504. [PMID: 34075195 PMCID: PMC8169924 DOI: 10.1038/s41598-021-91175-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/18/2021] [Indexed: 12/24/2022] Open
Abstract
The objective of this study was to report that lysosome extracted from egg white could be used as a drug through oral administration for treating diseases by using pH sensitive alginate oligosaccharides. Lysosome-alginate oligosaccharides composite were formulated for oral administration of lysosomes. The dissolution test confirmed the availability of the oral dosage form. When lysosome were used as an independent drug, the activity of protein was lost due to influence of low pH. Its antibacterial activity was also remarkably reduced. However, when lysosome-alginate oligosaccharides composite form was used, antimicrobial activity of lysozyme was maintained. At low pH, a gel-like matrix was formed by alginate oligosaccharides to protect the lysosome. When the pH was increased, alginate oligosaccharides were dissolved and the lysosome was released. SDS–polyacrylamide gel electrophoresis analysis of released lysosomes revealed that alginate oligosaccharide could effectively protect the lysosome from degradation or hydrolysis under acidic conditions for at least 2 h. The results of this study are important for application of lysosomes as therapeutic agents, and also it was confirmed that alginate oligosaccharides have potential as direct delivery system for the oral application of protein derived therapies.
Collapse
Affiliation(s)
- Ra-Mi Park
- Graduate School of Semiconductors and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Ngoc-Han Thi Nguyen
- Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Su-Min Lee
- Graduate School of Semiconductors and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, Chungdae-Ro, Seowon-Gu, Cheongju, 28644, South Korea.
| | - Jiho Min
- Graduate School of Semiconductors and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea. .,Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
7
|
Akhter DT, Simpson JD, Fletcher NL, Houston ZH, Fuchs AV, Bell CA, Thurecht KJ. Oral Delivery of Multicompartment Nanomedicines for Colorectal Cancer Therapeutics: Combining Loco‐Regional Delivery with Cell‐Target Specificity. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dewan T. Akhter
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
| | - Joshua D. Simpson
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
| | - Nicholas L. Fletcher
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
| | - Zachary H. Houston
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
| | - Adrian V. Fuchs
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
| | - Craig A. Bell
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
| | - Kristofer J. Thurecht
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology The University of Queensland Brisbane Queensland 4072 Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
8
|
Pérez-Madrigal MM, Torras J, Casanovas J, Häring M, Alemán C, Díaz DD. Paradigm Shift for Preparing Versatile M2+-Free Gels from Unmodified Sodium Alginate. Biomacromolecules 2017; 18:2967-2979. [DOI: 10.1021/acs.biomac.7b00934] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Maria M. Pérez-Madrigal
- Institut
für Organische Chemie, Universität Regensburg, Universitätsstr.
31, D-93053 Regensburg, Germany
| | | | - Jordi Casanovas
- Departament
de Química, EPS, Universitat de Lleida, Jaume II 69, 25001 Lleida, Spain
| | - Marleen Häring
- Institut
für Organische Chemie, Universität Regensburg, Universitätsstr.
31, D-93053 Regensburg, Germany
| | | | - David Díaz Díaz
- Institut
für Organische Chemie, Universität Regensburg, Universitätsstr.
31, D-93053 Regensburg, Germany
- IQAC−CSIC, Jordi Girona 18-26, E-08034 Barcelona, Spain
| |
Collapse
|
9
|
Mota AH, Silva CO, Nicolai M, Baby A, Palma L, Rijo P, Ascensão L, Reis CP. Design and evaluation of novel topical formulation with olive oil as natural functional active. Pharm Dev Technol 2017; 23:794-805. [DOI: 10.1080/10837450.2017.1340951] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ana Henriques Mota
- CBiOS – Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Ctra, Universidad Complutense, Alcalá de Henares, Spain
| | - Catarina Oliveira Silva
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Ctra, Universidad Complutense, Alcalá de Henares, Spain
| | - Marisa Nicolai
- CBiOS – Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - André Baby
- Departmento Farmácia, Escola de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Lídia Palma
- CBiOS – Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Patrícia Rijo
- CBiOS – Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
- iMed.ULisboa - Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa, Portugal
| | - Lia Ascensão
- Centro de Estudos do Ambiente e do Mar (CESAM), Faculdade de Ciências da Universidade de Lisboa, Edifício C2, Campo Grande, Lisboa, Portugal
| | - Catarina Pinto Reis
- iMed.ULisboa - Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa, Portugal
- IBEB - Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Portugal
| |
Collapse
|
10
|
Li J, He J, Huang Y. Role of alginate in antibacterial finishing of textiles. Int J Biol Macromol 2017; 94:466-473. [DOI: 10.1016/j.ijbiomac.2016.10.054] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 10/17/2016] [Indexed: 11/30/2022]
|
11
|
Samak YO, El Massik M, Coombes AGA. A Comparison of Aerosolization and Homogenization Techniques for Production of Alginate Microparticles for Delivery of Corticosteroids to the Colon. J Pharm Sci 2016; 106:208-216. [PMID: 27693300 DOI: 10.1016/j.xphs.2016.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 02/06/2023]
Abstract
Alginate microparticles incorporating hydrocortisone hemisuccinate were produced by aerosolization and homogenization methods to investigate their potential for colonic drug delivery. Microparticle stabilization was achieved by CaCl2 crosslinking solution (0.5 M and 1 M), and drug loading was accomplished by diffusion into blank microparticles or by direct encapsulation. Homogenization method produced smaller microparticles (45-50 μm), compared to aerosolization (65-90 μm). High drug loadings (40% wt/wt) were obtained for diffusion-loaded aerosolized microparticles. Aerosolized microparticles suppressed drug release in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) prior to drug release in simulated colonic fluid (SCF) to a higher extent than homogenized microparticles. Microparticles prepared using aerosolization or homogenization (1 M CaCl2, diffusion loaded) released 5% and 17% of drug content after 2 h in SGF and 4 h in SIF, respectively, and 75% after 12 h in SCF. Thus, aerosolization and homogenization techniques show potential for producing alginate microparticles for colonic drug delivery in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Yassmin O Samak
- Department of Pharmaceutics, Pharmacy Australia Centre of Excellence, University of Queensland, Brisbane, Queensland 4102, Australia.
| | - Magda El Massik
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University, Alexandria, Egypt
| | - Allan G A Coombes
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
12
|
Lin Z, Zhou D, Hoag S, Qiu Y. Influence of Drug Properties and Formulation on In Vitro Drug Release and Biowaiver Regulation of Oral Extended Release Dosage Forms. AAPS JOURNAL 2016; 18:333-45. [PMID: 26769249 DOI: 10.1208/s12248-015-9861-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/14/2015] [Indexed: 11/30/2022]
Abstract
Bioequivalence (BE) studies are often required to ensure therapeutic equivalence for major product and manufacturing changes. Waiver of a BE study (biowaiver) is highly desired for such changes. Current regulatory guidelines allow for biowaiver of proportionally similar lower strengths of an extended release (ER) product provided it exhibits similar dissolution to the higher strength in multimedia. The objective of this study is to demonstrate that (1) proportionally similar strengths of ER tablets exhibiting similar in vitro dissolution profiles do not always assure BE and (2) different strengths that do not meet the criteria for dissolution profile similarity may still be bioequivalent. Four marketed ER tablets were used as model drug products. Higher and lower (half) strength tablets were prepared or obtained from commercial source. In vitro drug release was compared using multi-pH media (pH 1.2, 4.5, 6.8) per regulatory guidance. In vivo performance was assessed based on the available in vivo BE data or established in vitro-in vivo relationships. This study demonstrated that the relationship between in vitro dissolution and in vivo performance is complex and dependent on the characteristics of specific drug molecules, product design, and in vitro test conditions. As a result, proportionally similar strengths of ER dosage forms that meet biowaiver requirements per current regulatory guidelines cannot ensure bioequivalence in all cases. Thus, without an established relationship between in vitro and in vivo performance, granting biowaiver based on passing in vitro tests may result in the approval of certain bioinequivalent products, presenting risks to patients. To justify any biowaiver using in vitro test, it is essential to understand the effects of drug properties, formulation design, product characteristics, test method, and its in vivo relevance. Therefore, biowaiver requirements of different strengths of ER dosage forms specified in the current regulatory guidance should be reevaluated to assure consistent safety and efficacy among different strengths.
Collapse
Affiliation(s)
- Zhongqiang Lin
- Oral Drug Products, Manufacturing Science and Technology, AbbVie, Inc., Dept -045M, Bldg A4-2, 1401 Sheridan Road, North Chicago, Illinois, 60064-6235, USA.,School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Deliang Zhou
- Oral Drug Products, Manufacturing Science and Technology, AbbVie, Inc., Dept -045M, Bldg A4-2, 1401 Sheridan Road, North Chicago, Illinois, 60064-6235, USA
| | - Stephen Hoag
- School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Yihong Qiu
- Oral Drug Products, Manufacturing Science and Technology, AbbVie, Inc., Dept -045M, Bldg A4-2, 1401 Sheridan Road, North Chicago, Illinois, 60064-6235, USA.
| |
Collapse
|
13
|
Haffner FB, Girardon M, Fontanay S, Canilho N, Duval RE, Mierzwa M, Etienne M, Diab R, Pasc A. Core–shell alginate@silica microparticles encapsulating probiotics. J Mater Chem B 2016; 4:7929-7935. [DOI: 10.1039/c6tb02802k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lactobacillus rhamnosus GG (LGG) was encapsulated in core–shell alginate–silica microcapsules by coating the electrosprayed ionogel with a silica shell via hydrolysis/condensation of alkoxysilane precursors.
Collapse
Affiliation(s)
- F. B. Haffner
- CNRS
- Structure et Réactivité des Systèmes Moléculaires Complexes
- SRSMC
- Nancy
- France
| | - M. Girardon
- CNRS
- Structure et Réactivité des Systèmes Moléculaires Complexes
- SRSMC
- Nancy
- France
| | - S. Fontanay
- CNRS
- Structure et Réactivité des Systèmes Moléculaires Complexes
- SRSMC
- Nancy
- France
| | - N. Canilho
- CNRS
- Structure et Réactivité des Systèmes Moléculaires Complexes
- SRSMC
- Nancy
- France
| | - R. E. Duval
- CNRS
- Structure et Réactivité des Systèmes Moléculaires Complexes
- SRSMC
- Nancy
- France
| | - M. Mierzwa
- CNRS and Université de Lorraine
- Laboratoire de Chimie Physique et Microbiology pour l'Environnement
- LCPME
- UMR 7564
- 405
| | - M. Etienne
- CNRS and Université de Lorraine
- Laboratoire de Chimie Physique et Microbiology pour l'Environnement
- LCPME
- UMR 7564
- 405
| | - R. Diab
- CNRS
- Structure et Réactivité des Systèmes Moléculaires Complexes
- SRSMC
- Nancy
- France
| | - A. Pasc
- CNRS
- Structure et Réactivité des Systèmes Moléculaires Complexes
- SRSMC
- Nancy
- France
| |
Collapse
|
14
|
Elia R, Guo J, Budijono S, Normand V, Benczédi D, Omenetto F, Kaplan DL. Encapsulation of Volatile Compounds in Silk Microparticles. JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH 2015; 12:793-799. [PMID: 26568787 PMCID: PMC4640459 DOI: 10.1007/s11998-015-9668-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Various techniques have been employed to entrap fragrant oils within microcapsules or microparticles in the food, pharmaceutical, and chemical industries for improved stability and delivery. In the present work we describe the use of silk protein microparticles for encapsulating fragrant oils using ambient processing conditions to form an all-natural biocompatible matrix. These microparticles are stabilized via physical crosslinking, requiring no chemical agents, and are prepared with aqueous and ambient processing conditions using polyvinyl alcohol-silk emulsions. The particles were loaded with fragrant oils via direct immersion of the silk particles within an oil bath. The oil-containing microparticles were coated using alternating silk and polyethylene oxide layers to control the release of the oil from the microspheres. Particle morphology and size, oil loading capacity, release rates as well as silk-oil interactions and coating treatments were characterized. Thermal analysis demonstrated that the silk coatings can be tuned to alter both retention and release profiles of the encapsulated fragrance. These oil containing particles demonstrate the ability to adsorb and controllably release oils, suggesting a range of potential applications including cosmetic and fragrance utility.
Collapse
Affiliation(s)
- Roberto Elia
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155
| | - Jin Guo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155
| | | | | | - Daniel Benczédi
- Firmenich SA, 1, Route des Jeunes, 1211 Geneva 8, Switzerland
| | - Fiorenzo Omenetto
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155
| |
Collapse
|
15
|
Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.07.010] [Citation(s) in RCA: 333] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Fu S, Buckner IS, Block LH. Inter-grade and inter-batch variability of sodium alginate used in alginate-based matrix tablets. AAPS PharmSciTech 2014; 15:1228-37. [PMID: 24889735 DOI: 10.1208/s12249-014-0154-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/14/2014] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study is to characterize the inter-grade and inter-batch variability of sodium alginate used in the formulation of matrix tablets. Four different grades and three batches of one grade of sodium alginate were used to prepare matrix tablets. Swelling, erosion, and drug release tests of sodium alginate matrix tablets were conducted in a USP dissolution apparatus. Substantial differences in swelling and erosion behavior of sodium alginate matrix tablets were evident among different viscosity grades. Even different batches of the same grade exhibit substantial differences in the swelling and erosion behavior of their matrix tablets. The erosion behavior of sodium alginate matrix tablets can be partly explained by their rheological properties (both apparent viscosity and viscoelasticity) in solution. Sodium alginate with higher apparent viscosity and viscoelasticity in solution show slower erosion rate and higher swelling rate. Compacts prepared from grades or batches with higher viscosity and higher viscoelasticity show slower drug release. For grades or batches with similar apparent viscosities, apparent viscosities of sodium alginate solution at low concentration alone are not sufficient to predict the functionality of sodium alginate in matrix tablets. Viscoelastic properties of sodium alginate solutions at one high concentration corresponding to the polymer gel state, may be suitable indicia of the extended release behavior of sodium alginate matrix tablets.
Collapse
|
17
|
Jain D, Bar-Shalom D. Alginate drug delivery systems: application in context of pharmaceutical and biomedical research. Drug Dev Ind Pharm 2014; 40:1576-84. [DOI: 10.3109/03639045.2014.917657] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Sosnik A. Alginate Particles as Platform for Drug Delivery by the Oral Route: State-of-the-Art. ISRN PHARMACEUTICS 2014; 2014:926157. [PMID: 25101184 PMCID: PMC4004034 DOI: 10.1155/2014/926157] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 02/25/2014] [Indexed: 11/17/2022]
Abstract
Pharmaceutical research and development aims to design products with ensured safety, quality, and efficacy to treat disease. To make the process more rational, coherent, efficient, and cost-effective, the field of Pharmaceutical Materials Science has emerged as the systematic study of the physicochemical properties and behavior of materials of pharmaceutical interest in relation to product performance. The oral route is the most patient preferred for drug administration. The presence of a mucus layer that covers the entire gastrointestinal tract has been exploited to expand the use of the oral route by developing a mucoadhesive drug delivery system that showed a prolonged residence time. Alginic acid and sodium and potassium alginates have emerged as one of the most extensively explored mucoadhesive biomaterials owing to very good cytocompatibility and biocompatibility, biodegradation, sol-gel transition properties, and chemical versatility that make possible further modifications to tailor their properties. The present review overviews the most relevant applications of alginate microparticles and nanoparticles for drug administration by the oral route and discusses the perspectives of this biomaterial in the future.
Collapse
Affiliation(s)
- Alejandro Sosnik
- Group of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology De-Jur Building, Office 607, Technion City, 32000 Haifa, Israel
| |
Collapse
|
19
|
Garbacz G, Kandzi A, Koziolek M, Mazgalski J, Weitschies W. Release characteristics of quetiapine fumarate extended release tablets under biorelevant stress test conditions. AAPS PharmSciTech 2014; 15:230-6. [PMID: 24297600 PMCID: PMC3909154 DOI: 10.1208/s12249-013-0050-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/22/2013] [Indexed: 12/31/2022] Open
Abstract
The aim of the present work was the investigation of robustness and reliability of drug release from 50 to 400 mg quetiapine extended release HPMC matrix tablets towards mechanical stresses of biorelevant intensity. The tests were performed under standard conditions (USP apparatus II) as well as under simulated gastrointestinal stress conditions. Mechanical stresses including pressure and agitation were applied by using the biorelevant dissolution stress test apparatus as it has been introduced recently. Test algorithms already established in previous studies were applied to simulate fasting gastrointestinal conditions. The dissolution experiments demonstrated striking differences in the product performance among standard and stress test conditions as well as dose strengths. In USP apparatus II, dissolution profiles were affected mainly by media pH. The dissolution experiments performed in biorelevant dissolution stress test device demonstrated that stress events of biorelevant intensity provoked accelerated drug release from the tablets.
Collapse
Affiliation(s)
- Grzegorz Garbacz
- Institute of Pharmacy, University of Greifswald, Felix-Hausdorff-Strasse 3, 17487, Greifswald, Germany,
| | | | | | | | | |
Collapse
|
20
|
Melia CD, Timmins P. Natural Polysaccharides in Hydrophilic Matrices. HYDROPHILIC MATRIX TABLETS FOR ORAL CONTROLLED RELEASE 2014. [DOI: 10.1007/978-1-4939-1519-4_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Nokhodchi A, Raja S, Patel P, Asare-Addo K. The role of oral controlled release matrix tablets in drug delivery systems. BIOIMPACTS : BI 2012; 2:175-87. [PMID: 23678458 PMCID: PMC3648939 DOI: 10.5681/bi.2012.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/07/2012] [Accepted: 10/09/2012] [Indexed: 11/17/2022]
Abstract
Formulations that are able to control the release of drug have become an integral part of the pharmaceutical industry. In particular oral drug delivery has been the focus of pharmaceutical research for many years. This type of drug delivery has been at the centre of research due to its many benefits over conventional dosage. The focus of this review is on matrix tablets due to their widely use and simplicity of the formulation. This includes the discussion of various types of matrix tablets and factors affecting the drug release from these formulations. The mechanism of drug release from HPMC matrices is also discussed.
Collapse
Affiliation(s)
- Ali Nokhodchi
- Medway School of Pharmacy, University of Kent, Chatham, ME4 4TB, Kent, UK
| | - Shaista Raja
- Medway School of Pharmacy, University of Kent, Chatham, ME4 4TB, Kent, UK
| | - Pryia Patel
- Medway School of Pharmacy, University of Kent, Chatham, ME4 4TB, Kent, UK
| | | |
Collapse
|
22
|
Schmid W, Picker-Freyer KM. Tableting and tablet properties of alginates: characterisation and potential for Soft Tableting. Eur J Pharm Biopharm 2008; 72:165-72. [PMID: 18992337 DOI: 10.1016/j.ejpb.2008.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 10/14/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
Abstract
The aim of the study was to evaluate the suitability of alginates for Soft Tableting. For this purpose the compaction properties of alginates, varying in molecular weight, guluronic acid/mannuronic acid ratio and salt, were investigated and compared to MCC. Based on the mechanical properties, the suitability of the tested excipients for Soft Tableting was predicted. In order to test the prediction the tested materials were used to tablet enteric coated pellets, which served as a pressure sensitive material. The tableting behaviour was analysed by the 3-D modeling technique. The tablet properties were analysed by determining the elastic recovery and the compactibility. Alginates in general deformed elastically. The compression behaviour depended on the chemical composition of the alginates with sodium alginates being more elastic than potassium alginates. Tablets containing alginates with low guluronic acid content exhibited higher elasticity than tablets with alginates having a low mannuronic acid content. The plasticity of potassium alginates was higher than for sodium alginates. However, the plasticity of all tested alginates was lower than the plasticity of MCC. The compactibility of the tested alginates was sufficient. The proposed prediction, which states that tableting excipients with higher elasticity are more suitable for tableting sensitive materials than plastic excipients, was valid for the tested materials. The elastic alginates inflicted less damage on the pellets than the plastic MCC. Thus, all alginates were more appropriate for tableting pressure sensitive materials than MCC.
Collapse
Affiliation(s)
- Wolfgang Schmid
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | |
Collapse
|
23
|
Ching AL, Liew CV, Chan LW, Heng PWS. Modifying matrix micro-environmental pH to achieve sustained drug release from highly laminating alginate matrices. Eur J Pharm Sci 2008; 33:361-70. [DOI: 10.1016/j.ejps.2008.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 01/14/2008] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
|