1
|
Potaś J, Wach RA, Rokita B, Wróblewska M, Winnicka K. Evaluation of the impact of tragacanth/xanthan gum interpolymer complexation with chitosan on pharmaceutical performance of gels with secnidazole as potential periodontal treatment. Eur J Pharm Sci 2024; 192:106657. [PMID: 38040098 DOI: 10.1016/j.ejps.2023.106657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Periodontitis consists a group of dental disorders that affect about 70 % of the world population. The therapy mainly relies on mechanical removing bacterial biofilm, nevertheless, local or systemic antibacterial agents play a key role in treating the acute conditions. Secnidazole is a newer derivative of commonly used metronidazole with high safety profile and broad spectrum of antimicrobial activity. The aim of the study was to evaluate the applicability of polyelectrolyte complex-based hydrogels composed of anionic tragacanth with addition of xanthan gum and cationic chitosan as carriers for buccal/intra pocket delivery of secnidazole. Prepared hydrogels with 5 % and 10 % (w/w) drug content were evaluated pharmaceutically towards inter alia physicomechanical, rheological and thermal properties, drug release kinetics, swelling behavior or antimicrobial activity. Cytotoxicity against human primary umbilical vein endothelial cells was also assessed with two independent method. Stable compositions with secnidazole were obtained, however, various miscibility of the drug with the polymers was noted. By adding chitosan, antibacterial activity and swelling performance of the gels were improved, nevertheless, drop of the mucoadhesiveness was also recorded. Hydrogels with 5 % secnidazole were selected as effective antimicrobial compositions with the highest cytocompatibility. They might be considered as promising for oromucosal application with special attention given to SEC as an alternative locally administered antimicrobial agent.
Collapse
Affiliation(s)
- Joanna Potaś
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, Białystok 15-222, Poland.
| | - Radosław A Wach
- Department of Institute of Applied Radiation Chemistry, Faculty of Chemistry, Łódź University of Technology, Wróblewskiego 15, Łódź 93-590, Poland
| | - Bożena Rokita
- Department of Institute of Applied Radiation Chemistry, Faculty of Chemistry, Łódź University of Technology, Wróblewskiego 15, Łódź 93-590, Poland
| | - Magdalena Wróblewska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, Białystok 15-222, Poland
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, Białystok 15-222, Poland
| |
Collapse
|
2
|
Ibrahim N, Abbas H, El-Sayed NS, Gad HA. Rosmarinus officinalis L. hexane extract: phytochemical analysis, nanoencapsulation, and in silico, in vitro, and in vivo anti-photoaging potential evaluation. Sci Rep 2022; 12:13102. [PMID: 35907916 PMCID: PMC9338973 DOI: 10.1038/s41598-022-16592-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
A shift towards natural anti-aging ingredients has spurred the research to valorize traditionally used plants. In this context, Rosmarinus officinalis L. was evaluated for its photoprotective, antioxidant, anti-inflammatory, and anti-wrinkling properties. GC/MS and LC-ESI-HRMS based phytochemical profiling of rosemary leaves hexane extract resulted in the identification of 47 and 31 compounds, respectively and revealed rich content in triterpenoids, monoterpenoids and phenolic diterpenes. In vitro assays confirmed the antioxidant, anti-aging, and wound healing potential of rosemary extract along with a good safety profile, encouraging further development. A systematic molecular modelling study was conducted to elucidate the mechanistic background of rosemary anti-aging properties through the inhibitory effects of its major constituents against key anti-aging targets viz. elastase, collagenase, and hyaluronidase. Development of rosemary extract lipid nanocapsules-based mucoadhesive gels was performed to improve skin contact, permeation, and bioavailability prior to in vivo testing. The developed formulae demonstrated small particle size (56.55–66.13 nm), homogenous distribution (PDI of 0.207–0.249), and negatively charged Zeta potential (− 13.4 to − 15.6). In UVB-irradiated rat model, topical rosemary hexane extract-loaded lipid nanocapsules-based gel provided photoprotection, restored the antioxidant biochemical state, improved epidermal and dermal histological features, and decreased the level of inflammatory and wrinkling markers. The use of rosemary hexane extract in anti-aging and photoprotective cosmeceuticals represents a safe, efficient, and cost-effective approach.
Collapse
Affiliation(s)
- Nehal Ibrahim
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Nesrine S El-Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba A Gad
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt. .,Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia.
| |
Collapse
|
3
|
Jain SK, Jain AK, Rajpoot K. Expedition of Eudragit® Polymers in the Development of Novel Drug Delivery Systems. Curr Drug Deliv 2020; 17:448-469. [PMID: 32394836 DOI: 10.2174/1567201817666200512093639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/10/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Eudragit® polymer has been widely used in film-coating for enhancing the quality of products over other materials (e.g., shellac or sugar). Eudragit® polymers are obtained synthetically from the esters of acrylic and methacrylic acid. For the last few years, they have shown immense potential in the formulations of conventional, pH-triggered, and novel drug delivery systems for incorporating a vast range of therapeutics including proteins, vitamins, hormones, vaccines, and genes. Different grades of Eudragit® have been used for designing and delivery of therapeutics at a specific site via the oral route, for instance, in stomach-specific delivery, intestinal delivery, colon-specific delivery, mucosal delivery. Further, these polymers have also shown their great aptitude in topical and ophthalmic delivery. Moreover, available literature evidences the promises of distinct Eudragit® polymers for efficient targeting of incorporated drugs to the site of interest. This review summarizes some potential researches that are being conducted by eminent scientists utilizing the distinct grades of Eudragit® polymers for efficient delivery of therapeutics at various sites of interest.
Collapse
Affiliation(s)
- Sunil Kumar Jain
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| | - Akhlesh K Jain
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| | - Kuldeep Rajpoot
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| |
Collapse
|
4
|
El-Mofty HM, El-Nabarawi MA, Abd El Rehem RT, Teaima MH, Abary MYS, Salah M, Lotfy NM. Niosomes: Do They Increase the Potency of Topical Natamycin Ketorolac Formula in Treating Aspergillus Keratitis? An Experimental Study. J Ocul Pharmacol Ther 2020; 36:545-554. [PMID: 32357092 DOI: 10.1089/jop.2019.0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: Formulation of new drug delivery system as Natamycin (NT)-loaded nanoparticle niosomal formulae mixed in different polymer gel, with the addition of ketorolac tromethamine (KETR). Pharmaceutical and experimental assessments to evaluate their safety and efficacy in treating Aspergillus keratitis. Methods: NT nanoparticle niosomes prepared by reverse-phase evaporation technique were mixed in different polymers, with the addition of KETR. Two formulae are evaluated in this study: F1 [NT-loaded nanoparticle niosomes/0.5% KETR 4% carboxymethyl cellulose (Na.CMC) gel], F2 [NT-loaded nanoparticle niosomes/0.5% KETR 2% hydroxypropylmethyl cellulose (HPMC)-E4 gel], and mixed marketed products (MMP), namely Natamet® and Ketoroline® suspension eye drops. NT-loaded nanoparticle niosomes/0.5% KETR were evaluated through viscosity determination, mucoadhesive attractive force, and in vitro NT release studies. The in vivo antifungal evaluation was performed on 45 albino rabbits, Aspergillus species were inoculated in right corneas of all rabbits, and then rabbits were subdivided into 3 groups, 15 rabbits each: Group A: received F1, Group B: received F2, and Group C: received MMP. Daily examination of rabbits was performed for evaluation of corneal infiltration, and signs of iritis. Two weeks later, rabbits were euthanized; their corneas were dissected at the limbus and sent for histopathological evaluation. Results: F1 had a higher viscosity and more mucoadhesive power than F2, and showed better results on corneal infiltration, and level of hypopyon. These results were consistent with the histopathological examination. Conclusion: The formula of NT-loaded nanoparticle niosomes/0.5% KT 4% Na.CMC gel has the best results from all pharmaceutical in vitro evaluations and a better cure percent in experimental application.
Collapse
Affiliation(s)
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Randa Tag Abd El Rehem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohammed Y S Abary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona Salah
- Department of Surgical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nancy M Lotfy
- Department of Ophthalmology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Gad HA, Abd El-Rahman FA, Hamdy GM. Chamomile oil loaded solid lipid nanoparticles: A naturally formulated remedy to enhance the wound healing. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Tawfik MS, Abdel-Ghaffar KA, Gamal AY, El-Demerdash FH, Gad HA. Lycopene solid lipid microparticles with enhanced effect on gingival crevicular fluid protein carbonyl as a biomarker of oxidative stress in patients with chronic periodontitis. J Liposome Res 2019; 29:375-382. [DOI: 10.1080/08982104.2019.1566243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Maie S. Tawfik
- Department of Periodontology, Faculty of Dental Medicine, Ain Shams University, Cairo, Egypt
| | - Khaled A. Abdel-Ghaffar
- Department of Periodontology, Faculty of Dental Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Y. Gamal
- Department of Periodontology, Faculty of Dental Medicine, Ain Shams University, Cairo, Egypt
| | - Fatma H. El-Demerdash
- Department of Periodontology, Faculty of Dental Medicine, Ain Shams University, Cairo, Egypt
| | - Heba A. Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Paderni C, Compilato D, Giannola LI, Campisi G. Oral local drug delivery and new perspectives in oral drug formulation. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 114:e25-34. [PMID: 22771408 DOI: 10.1016/j.oooo.2012.02.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/17/2012] [Accepted: 02/24/2012] [Indexed: 11/24/2022]
Abstract
Modern pharmaceutical science has provided us with a wide range of substances to be administered with a wide large variety of dosage forms. Local drug delivery systems have been used for a long time; in particular, for the local therapy of diseases affecting the oral cavity. Although these diseases are often extremely responsive to local therapy, the mouth often presents various difficulties in the application of topical compounds (owing to saliva and the mouth's different functions), resulting in a short retention time of dosage forms with a consequent low therapeutic efficacy. To resolve these limitations, research today concentrates on the development of bioadhesive formulations. This review focuses on the permeability features of oral mucosa, the rationale of oral local drug delivery, and new potential bioadhesive local delivery systems. Furthermore, the most promising mucoadhesive systems proposed to locally treat oral diseases are discussed.
Collapse
Affiliation(s)
- Carlo Paderni
- Department of Surgical and Oncological Disciplines, Section of Oral Medicine V. Margiotta, University of Palermo, Palermo, Italy
| | | | | | | |
Collapse
|
8
|
Makky A, El-Gendi N, El-Menshawe S, El-Akkad Y. A buccoadhesive disc as a novel drug delivery system of tenoxicam: formulation and in vitro/in vivo evaluation. J Drug Deliv Sci Technol 2012. [DOI: 10.1016/s1773-2247(12)50019-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Shahin M, Hady SA, Hammad M, Mortada N. Optimized formulation for topical administration of clotrimazole using Pemulen polymeric emulsifier. Drug Dev Ind Pharm 2010; 37:559-68. [PMID: 21128701 DOI: 10.3109/03639045.2010.528768] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Emulgel topical formulation is a vehicle of potential for topical delivery of antifungal drugs. METHODS The imidazole derivative antifungal drug, clotrimazole (CZ), was formulated into emulgels using two grades of hydrophobically modified co-polymers of acrylic acid, namely Pemulen TR1 and TR2. The prepared emulgels were evaluated for their rheological properties, short- and long-term stability, in vitro release at 37°C. Microbiological evaluation of the formula showed that optimum stability and release was carried out to measure its antifungal activity. RESULTS All formulae showed non-Newtonian shear thinning behavior with little thixotropy or antithixotropy. Five of the prepared formulae showed good physical stability under different treatment conditions. Isopropyl myristate (IPM) emulgels exhibited higher rate of CZ release than either jojoba oil (JB) or liquid paraffin-based emulgels. A selected formula containing JB together with a combination of Pemulen TR1 and TR2 showed excellent stability as well as high rate of CZ release. Microbiological evaluation of the selected formula containing similar amount of CZ revealed 1.2-folds increase in the antifungal activity compared to commercially available formulation. CONCLUSION Emulgel dosage form based on Pemulen polymeric emulsifier and JB is a promising vehicle for topical delivery of CZ and further in vivo animal studies are recommended.
Collapse
Affiliation(s)
- Mostafa Shahin
- Department of Drug technology, Ain Shams University, Cairo, Egypt.
| | | | | | | |
Collapse
|