1
|
Calcium phosphate bone cements as local drug delivery systems for bone cancer treatment. BIOMATERIALS ADVANCES 2023; 148:213367. [PMID: 36921461 DOI: 10.1016/j.bioadv.2023.213367] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Bone cancer is usually a metastatic disease, affecting people of all ages. Its effective therapy requires a targeted drug administration locally at the cancer site so that the surrounding healthy organs and tissues stay unharmed. Upon a thorough literature search, a tremendous number of published articles are reporting on development of calcium phosphate cements (CPCs) for the treatment of a variety of diseases, such as osteoporosis, osteoarthritis, osteomyelitis, and other musculoskeletal disorders. However, just a limited number of research employs CPCs specifically for bone cancer treatment. In this review article, we study the factors influencing the local drug release from CPCs and particularly focus on bone cancer therapy. Finally, we locate the deficiencies in the literature regarding this specific topic and propose which other perspectives should be considered and discussed in future articles.
Collapse
|
2
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. COATINGS 2022; 12:1380. [DOI: 10.3390/coatings12101380] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Various types of materials have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A short time later, such synthetic biomaterials were called bioceramics. Bioceramics can be prepared from diverse inorganic substances, but this review is limited to calcium orthophosphate (CaPO4)-based formulations only, due to its chemical similarity to mammalian bones and teeth. During the past 50 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the CaPO4-based implants would remain biologically stable once incorporated into the skeletal structure or whether they would be resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed, and such formulations became an integrated part of the tissue engineering approach. Now, CaPO4-based scaffolds are designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various biomolecules and/or cells. Therefore, current biomedical applications of CaPO4-based bioceramics include artificial bone grafts, bone augmentations, maxillofacial reconstruction, spinal fusion, and periodontal disease repairs, as well as bone fillers after tumor surgery. Prospective future applications comprise drug delivery and tissue engineering purposes because CaPO4 appear to be promising carriers of growth factors, bioactive peptides, and various types of cells.
Collapse
|
3
|
Maharjan R, Lee JC, Kim NA, Jeong SH. Preparation of seeded granules to improve mechanical properties and various drug loading for pharmaceutical application. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Hazlett R, Schmidmeier C, O'Mahony J. Approaches for improving the flowability of high-protein dairy powders post spray drying – A review. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Savicki C, Camargo NHA, Gemelli E. Crystallization of carboplatin-loaded onto microporous calcium phosphate using high-vacuum method: Characterization and release study. PLoS One 2020; 15:e0242565. [PMID: 33290399 PMCID: PMC7723252 DOI: 10.1371/journal.pone.0242565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/05/2020] [Indexed: 11/18/2022] Open
Abstract
Drug delivery systems are a new approach to increase therapeutic efficacy and to reduce the side effects of traditional treatments. Calcium phosphates (CaPs) have been studied as drug delivery systems, especially in bone diseases. However, each system has some particularities that depend on the physical and chemical characteristics of the biomaterials and drug interaction. In this work, granulated CaPs were used as a matrix for loading the anticancer drug carboplatin using the high-vacuum method. Five compositions were applied: hydroxyapatite (HA), β-tricalcium phosphate (β-TCP), biphasic HAp 60%/β-TCP 40% (BCP), β-TCP/MgO nanocomposite, and β-TCP/SiO2 nanocomposite. Carboplatin drug in 50, 60, and 70 mg/g was precipitated on the surface of CaPs. Morphological, chemical and surface modifications in the carboplatin-CaPs were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), backscattered electron microscopy (BSE), X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), Fourier transform infrared (FT-IR), and Raman spectroscopy. The characterization of the CaP-carboplatin biomaterials showed heterogeneous crystalline precipitation of the drug, and no morphological modifications of the CaPs biomaterials. The in vitro release profile of carboplatin from CaPs was evaluated by the ultraviolet-visible (UV-Vis) method. The curves showed a burst release of upon 60% of carboplatin loaded followed by a slow-release of the drug for the time of the study. The results were typical of a low-interaction system and physisorption mechanism. The high-vacuum method permitted to load the high amount of carboplatin drug on the surface of the biomaterials despite the low interaction between carboplatin and CaPs.
Collapse
Affiliation(s)
- Cristiane Savicki
- Department of Mechanical Engineering, College of Technological Science, Santa Catarina State University, Joinville, Santa Catarina, Brazil
- * E-mail:
| | - Nelson Heriberto Almeida Camargo
- Department of Mechanical Engineering, College of Technological Science, Santa Catarina State University, Joinville, Santa Catarina, Brazil
| | - Enori Gemelli
- Department of Mechanical Engineering, College of Technological Science, Santa Catarina State University, Joinville, Santa Catarina, Brazil
| |
Collapse
|
6
|
De Simone V, Caccavo D, Lamberti G, d'Amore M, Barba AA. Wet-granulation process: phenomenological analysis and process parameters optimization. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.09.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Parent M, Baradari H, Champion E, Damia C, Viana-Trecant M. Design of calcium phosphate ceramics for drug delivery applications in bone diseases: A review of the parameters affecting the loading and release of the therapeutic substance. J Control Release 2017; 252:1-17. [DOI: 10.1016/j.jconrel.2017.02.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 01/08/2023]
|
8
|
|
9
|
|
10
|
Dorozhkin SV. Calcium Orthophosphate-Based Bioceramics. MATERIALS (BASEL, SWITZERLAND) 2013; 6:3840-3942. [PMID: 28788309 PMCID: PMC5452669 DOI: 10.3390/ma6093840] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/07/2013] [Accepted: 08/19/2013] [Indexed: 02/07/2023]
Abstract
Various types of grafts have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A bit later, such synthetic biomaterials were called bioceramics. In principle, bioceramics can be prepared from diverse materials but this review is limited to calcium orthophosphate-based formulations only, which possess the specific advantages due to the chemical similarity to mammalian bones and teeth. During the past 40 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the calcium orthophosphate-based implants remain biologically stable once incorporated into the skeletal structure or whether they were resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed and such formulations became an integrated part of the tissue engineering approach. Now calcium orthophosphate scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous and harbor different biomolecules and/or cells. Therefore, current biomedical applications of calcium orthophosphate bioceramics include bone augmentations, artificial bone grafts, maxillofacial reconstruction, spinal fusion, periodontal disease repairs and bone fillers after tumor surgery. Perspective future applications comprise drug delivery and tissue engineering purposes because calcium orthophosphates appear to be promising carriers of growth factors, bioactive peptides and various types of cells.
Collapse
|
11
|
Poutiainen S, Pajander J, Savolainen A, Ketolainen J, Jarvinen K. Evolution of Granule Structure and Drug Content During Fluidized Bed Granulation by X-Ray Microtomography and Confocal Raman Spectroscopy. J Pharm Sci 2011; 100:5254-69. [DOI: 10.1002/jps.22719] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/17/2011] [Accepted: 07/12/2011] [Indexed: 11/11/2022]
|
12
|
Baradari H, Damia C, Dutreih-Colas M, Champion E, Chulia D, Viana M. β-TCP porous pellets as an orthopaedic drug delivery system: ibuprofen/carrier physicochemical interactions. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2011; 12:055008. [PMID: 27877446 PMCID: PMC5074440 DOI: 10.1088/1468-6996/12/5/055008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/29/2011] [Accepted: 08/10/2011] [Indexed: 06/06/2023]
Abstract
Calcium phosphate bone substitute materials can be loaded with active substances for in situ, targeted drug administration. In this study, porous β-TCP pellets were investigated as an anti-inflammatory drug carrier. Porous β-TCP pellets were impregnated with an ethanolic solution of ibuprofen. The effects of contact time and concentration of ibuprofen solution on drug adsorption were studied. The ibuprofen adsorption equilibrium time was found to be one hour. The adsorption isotherms fitted to the Freundlich model, suggesting that the interaction between ibuprofen and β-TCP is weak. The physicochemical characterizations of loaded pellets confirmed that the reversible physisorption of ibuprofen on β-TCP pellets is due to Van der Waals forces, and this property was associated with the 100% ibuprofen release.
Collapse
Affiliation(s)
- Hiba Baradari
- SPCTS—Centre Européen de la Céramique, 12 Rue Atlantis, 87068, Limoges CEDEX, France
| | | | | | | | | | | |
Collapse
|
13
|
Soundrapandian C, Basu D, Sa B, Datta S. Local drug delivery system for the treatment of osteomyelitis: In vitro evaluation. Drug Dev Ind Pharm 2010; 37:538-46. [PMID: 21126218 DOI: 10.3109/03639045.2010.528427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Local antimicrobial delivery is a potential area of research conceptualized to provide alternative and better methods of treatment for cases, as osteomyelitis where avascular zones prevent the delivery of drugs from conventional routes of administration. Drug-loaded polymers and calcium phosphates as hydroxyapatites have been tried earlier. Bioactive glasses are bone-filling materials used for space management in orthopedic and dental surgery. A new bioactive glass (SSS2) was synthesized and fabricated into porous scaffold with a view to provide prolonged local delivery of gatifloxacin and fluconazole as suitable for the treatment of osteomyelitis. The new SSS2 was characterized by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analyses. In addition, the bioactivity of the SSS2 glass and resulting scaffold was examined by in vitro acellular method and ascertained by FTIR and XRD. The pore size distribution was analysed by mercury intrusion porosimetry and the release of drugs from scaffolds were studied in vitro. The glass and the resulting scaffolds were bioactive indicating that they can bond with bone in vivo. The scaffolds were porous with pores predominantly in the range of 10-60 µm, released the drugs effectively for 6 weeks and deemed suitable for local delivery of drugs to treat osteomyelitis.
Collapse
Affiliation(s)
- Chidambaram Soundrapandian
- Central Glass & Ceramic Research Institute, Bioceramic and Coating Division, Raja S C Mallick Road, Kolkata, India
| | | | | | | |
Collapse
|
14
|
Chevalier E, Viana M, Cazalbou S, Makein L, Dubois J, Chulia D. Ibuprofen-loaded calcium phosphate granules: combination of innovative characterization methods to relate mechanical strength to drug location. Acta Biomater 2010; 6:266-74. [PMID: 19654055 DOI: 10.1016/j.actbio.2009.07.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 07/22/2009] [Accepted: 07/30/2009] [Indexed: 11/30/2022]
Abstract
This paper studies the impact of the location of a drug substance on the physicochemical and mechanical properties of two types of calcium phosphate granules loaded with seven different contents of ibuprofen, ranging from 1.75% to 46%. These implantable agglomerates were produced by either low or high shear granulation. Unloaded Mi-Pro pellets presented higher sphericity and mechanical properties, but were slightly less porous than Kenwood granules (57.7% vs 61.2%). Nevertheless, the whole expected quantity of ibuprofen could be integrated into both types of granules. A combination of surface analysis, using near-infrared (NIR) spectroscopy coupling chemical imaging, and pellet porosity, by mercury intrusion measurements, allowed ibuprofen to be located. It was shown that, from 0% to 22% drug content, ibuprofen deposited simultaneously on the granule surface, as evidenced by the increase in surface NIR signal, and inside the pores, as highlighted by the decrease in pore volume. From 22%, porosity was almost filled, and additional drug substance coated the granule surfaces, leading to a large increase in the surface NIR signal. This coating was more regular for Mi-Pro pellets owing to their higher sphericity and greater surface deposition of drug substance. Unit crush tests using a microindenter revealed that ibuprofen loading enhanced the mechanical strength of granules, especially above 22% drug content, which was favorable to further application of the granules as a bone defect filler.
Collapse
Affiliation(s)
- E Chevalier
- Université de Limoges, CNRS SPCTS UMR 6638, Faculté de Pharmacie, Laboratoire de Pharmacie Galénique, 2 rue du Dr Marcland, 87025 Limoges Cedex, France
| | | | | | | | | | | |
Collapse
|