1
|
Fouad SA, Badr TA, Abdelbary A, Fadel M, Abdelmonem R, Jasti BR, El-Nabarawi M. New Insight for Enhanced Topical Targeting of Caffeine for Effective Cellulite Treatment: In Vitro Characterization, Permeation Studies, and Histological Evaluation in Rats. AAPS PharmSciTech 2024; 25:237. [PMID: 39384727 DOI: 10.1208/s12249-024-02943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Cellulite (CLT) is one of the commonly known lipodystrophy syndromes affecting post-adolescent women worldwide. It is topographically characterized by an orange-peel, dimpled skin appearance hence, it is an unacceptable cosmetic problem. CLT can be modulated by surgical procedures such as; liposuction and mesotherapy. But, these options are invasive, expensive and risky. For these reasons, topical CLT treatments are more preferred. Caffeine (CA), is a natural alkaloid that is well-known for its prominent anti-cellulite effects. However, its hydrophilicity hinders its cutaneous permeation. Therefore, in the present study CA was loaded into solid lipid nanoparticles (SLNs) by high shear homogenization/ultrasonication. CA-SLNs were prepared using Compritol® 888 ATO and stearic acid as solid lipids, and span 60 and brij™35, as lipid dispersion stabilizing agents. Formulation variables were adjusted to obtain entrapment efficiency (EE > 75%), particle size (PS < 350 nm), zeta potential (ZP < -25 mV) and polydispersity index (PDI < 0.5). CA-SLN-4 was selected and showed maximized EE (92.03 ± 0.16%), minimized PS (232.7 ± 1.90 nm), and optimum ZP (-25.15 ± 0.65 mV) and PDI values (0.24 ± 0.02). CA-SLN-4 showed superior CA release (99.44 ± 0.36%) compared to the rest CA-SLNs at 1 h. TEM analysis showed spherical, nanosized CA-SLN-4 vesicles. Con-LSM analysis showed successful CA-SLN-4 permeation transepidermally and via shunt diffusion. CA-SLN-4 incorporated into Noveon AA-1® hydrogel (CA-SLN-Ngel) showed accepted physical/rheological properties, and in vitro release profile. Histological studies showed that CA-SLN-Ngel significantly reduced mean subcutaneous fat tissue (SFT) thickness with 4.66 fold (p = 0.035) and 4.16 fold (p = 0.0001) compared to CA-gel, at 7th and 21st days, respectively. Also, significant mean SFT thickness reduction was observed compared to untreated group with 4.83 fold (p = 0.0005) and 3.83 fold (p = 0.0043), at 7th and 21st days, respectively. This study opened new avenue for CA skin delivery via advocating the importance of skin appendages. Hence, CA-SLN-Ngel could be a promising nanocosmeceutical gel for effective CLT treatment.
Collapse
Affiliation(s)
- Shahinaze A Fouad
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Ahram Canadian University, 6th of October city, Giza, Egypt.
| | - Taher A Badr
- Biolink Egypt for Chemical Industries, 6th of October city, Giza, Egypt
| | - Ahmed Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Maha Fadel
- Department of Medical Applications of Laser (MAL), National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Cairo, Egypt
| | - Bhaskara R Jasti
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy & Health Sciences, University of the Pacific, Stockton, California, USA
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
2
|
Khalil LM, El-Refaie WM, Elnaggar YS, Abdelkader H, Al Fatease A, Abdallah OY. Non-invasive caffeinated-nanovesicles as adipocytes-targeted therapy for cellulite and localized fats. Int J Pharm X 2024; 7:100236. [PMID: 38524143 PMCID: PMC10958479 DOI: 10.1016/j.ijpx.2024.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Caffeine (CAF) is a non-selective adenosine A1 receptor antagonist which predominates in fat cells. When CAF binds to adenosine receptors, it increases cyclic adenosine monophosphate; inhibiting adipogenesis and inducing fat lipolysis. Resveratrol (RSV) is an antioxidant polyphenol possessing different anti-obesity mechanisms. Topical application of both hydrophilic CAF and lipophilic RSV is limited. This study aimed to develop novel caffeinated-resveratrol bilosomes (CRB) and caffeine-bilosomes (CB) that could non-invasively target and deposit in fat cells. RSV bilosomes (RB) were prepared as a non-targeted system for comparison. CRB showed nanosize (364.1 nm ±6.5 nm) and high entrapment for both active compounds. Rats treated topically with CRB revealed a significant decrease (P = 0.039) in body weight. Histological analysis of the excised skin demonstrated a reduction in the subcutaneous fatty layer thickness and a decrease in the size of connective tissue-imbedded fat cells. Kidney histological examination of RB-treated rats showed subcapsular tubular epithelial cells with cytoplasmic vacuolation. This reflects a systemic effect of RSV from the non-targeted RB compared to CRB, which had a targeting effect on the adipose tissue. In conclusion, CAF in CRB significantly enhanced RSV deposition in adipose tissue and assisted its local-acting effect for managing obesity and cellulite.
Collapse
Affiliation(s)
- Lobna M. Khalil
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Wessam M. El-Refaie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Yosra S.R. Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia
| | - Ossama Y. Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Tanha A, Rabiee M, Rostami A, Ahmadi S. A green-based approach for noninvasive skin rejuvenation: Potential application of hyaluronic acid. ENVIRONMENTAL RESEARCH 2023; 234:116467. [PMID: 37343757 DOI: 10.1016/j.envres.2023.116467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/18/2023] [Indexed: 06/23/2023]
Abstract
Gradually, loss of skin elasticity and elastic properties occurs after 30 years of age and will be associated with several changes, including creating wrinkles, skin laxity (sagging skin), and skin blemishes. In general, people all over the world are looking for ways to keep their facial skin young over time. There are several strategies to skin rejuvenate, including invasive and non-invasive methods. However, invasive methods have less popularity than non-invasive methods due to their need for specialist physicians (medical expertise), localized neuropathic pains for patients, the prevalence and incidence of skin infections, and high-cost clinical services. In the meantime, skin hydration is one of the simplest non-invasive methods for skin rejuvenation, and HA, with anti-aging and skin collagen-stimulating properties, has been introduced as a natural skin moisturizing agent. Therefore, since this composition maintains facial skin moisture and radiance, and improves its elasticity, it has always been considered by experts and specialist physicians. On the other hand, due to its lipophilic properties, hydrophilic macromolecules containing HA cannot pass through the stratum corneum. However, they have temporary and superficial softening effects on the skin. Hence, some nanocarriers have been suggested to overcome this problem and develop the properties and positive influences of HA on skin rejuvenation. Therefore, the present study aimed to introduce some new non-invasive approaches in facial skin rejuvenation, including applying liposomes, niosomes, ethosomes, and ionic liquids, to transport HA into the inner and deeper layers of the skin, including Dermis. In this review article, we examine non-invasive methods using nanoparticles to deliver HA to the epidermis and dermis of the skin for skin rejuvenation.
Collapse
Affiliation(s)
- Amirabas Tanha
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Azin Rostami
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Kassem AA, Asfour MH, Abd El-Alim SH, Khattab MA, Salama A. Topical caffeine-loaded nanostructured lipid carriers for enhanced treatment of cellulite: A 3 2 full factorial design optimization and in vivo evaluation in rats. Int J Pharm 2023; 643:123271. [PMID: 37499772 DOI: 10.1016/j.ijpharm.2023.123271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The goal of this study was the development and evaluation of semisolid caffeine (CAF) loaded nanostructured lipid carriers (NLCs) for topical treatment of cellulite. CAF-loaded NLC formulations were prepared via high-speed homogenization followed by ultrasonication. A 32 full factorial design was employed for formulation optimization. The total lipid content (%) and the liquid lipid content per total lipids (%) were chosen as factors, whereas particle size (PS), polydispersity index (PDI), zeta potential (|ZP|) and viscosity (VIS) were selected as responses. The design suggested CAF-NLC3 as the optimum formulation consisting of a total lipid content of 15% w/w (palmitic acid and soft paraffin/isopropyl myristate, 7:3 w/w) and a surfactant content of 10% w/w (Tween 80/lecithin, 8:1.2 w/w). CAF-NLC3 revealed PS, PDI, ZP, VIS and CAF content values of 318.8 nm, 0.253, -41.1 mV, 18.0 Pa.s and 97.57%, respectively. It showed a pseudoplastic rheological behavior, acceptable pH value (5.25), good spreadability (1.12 mm2/g) and spherical shape employing transmission electron microscopy. Differential scanning calorimetry and X-ray diffraction demonstrated the amorphization of CAF in CAF-NLC3. CAF-NLC3 remained stable for 3 months at room and refrigeration conditions. A single topical application of CAF-NLC3 on shaved abdominal skins of Wistar rats revealed enhanced skin retention of CAF by 2-fold and 1.4-fold after 4 h when compared with plain CAF gel (CAF-P) and marketed CAF gel (CAF-M), respectively. Furthermore, CAF-NLC3 exhibited a superior anti-cellulite activity in comparison with CAF-P and CAF-M through elevating extracellular matrix components (collagen 1, elastin and hyaluronic acid) and stimulating the brown adipose tissue thermogenesis via up-regulating UCP1 and PPAR-γ expression. In addition, CAF-NLC3 prominently increased lipolysis through HSL activity and decreased pro-inflammatory cytokines such as ICAM-1 and VCAM-1 after 30 days of treatment on a high fat diet-induced cellulite rat model. These findings were further confirmed by histopathological examination supported by morphometric analysis. Therefore, incorporation of CAF in a semisolid NLC formulation would be a promising cosmetic approach for the topical treatment of cellulite.
Collapse
Affiliation(s)
- Ahmed Alaa Kassem
- Pharmaceutical Technology Department, National Research Centre, El- Buhouth St., Dokki, Cairo 12622, Egypt.
| | - Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El- Buhouth St., Dokki, Cairo 12622, Egypt
| | - Sameh Hosam Abd El-Alim
- Pharmaceutical Technology Department, National Research Centre, El- Buhouth St., Dokki, Cairo 12622, Egypt
| | | | - Abeer Salama
- Pharmacology Department, National Research Centre, El- Buhouth St., Dokki, Cairo 12622, Egypt
| |
Collapse
|
5
|
Inal O, Amasya G, Sezgin Bayindir Z, Yuksel N. Development and quality assessment of glutathione tripeptide loaded niosome containing carbopol emulgels as nanocosmeceutical formulations. Int J Biol Macromol 2023; 241:124651. [PMID: 37119885 DOI: 10.1016/j.ijbiomac.2023.124651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
This study focuses on the preparation, physicopharmaceutical and mechanical characterization of reduced glutathione tripeptide loaded niosome containing emulgels as a novel nanocosmeceutical product. Prepared emulgel formulations were mainly composed of oily phase containing different lipids such as glycerine dibehenate, cetyl alcohol, cetearyl alcohol, etc., and aqueous phase containing Carbopol934® as gelling agent. Niosomal lipidic vesicles prepared from Span 60 and cholesterol were subsequently incorporated into optimum emulgel formulations. The pH, viscosity, and textural/mechanical properties of emulgels were examined before and after the incorporation of niosomes. The viscoelasticity and morphological characterization were performed on the final formulation before the packed formulation's microbiological stability test. The hardness and compressibility results ensured easy removal of the emulgel from the container. Due to the carboxyl groups of Carbopol934®, moderate adhesiveness with good cohesiveness was achieved. The rheological characteristics of the emulgels were estimated by oscillatory testing and the data fitted with the Herschel-Bulkley model. Thus, the viscoelastic properties and shear-thinning flow of emulgels were demonstrated. The final formulation was microbiologically stable, and pathogens or skin-irritating allergens were not detected. An anti-aging cosmeceutical preparation containing glutathione tripeptide loaded lipid-based niosome dispersion, suitable for topical use due to its textural and viscosity properties, was successfully produced.
Collapse
Affiliation(s)
- Ozge Inal
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06560 Ankara, Turkey.
| | - Gulin Amasya
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06560 Ankara, Turkey.
| | - Zerrin Sezgin Bayindir
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06560 Ankara, Turkey.
| | - Nilufer Yuksel
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06560 Ankara, Turkey.
| |
Collapse
|
6
|
Elsheikh MA, Gaafar PM, Khattab MA, A. Helwah MK, Noureldin MH, Abbas H. Dual-effects of caffeinated hyalurosomes as a nano-cosmeceutical gel counteracting UV-induced skin ageing. Int J Pharm X 2023; 5:100170. [PMID: 36844895 PMCID: PMC9950955 DOI: 10.1016/j.ijpx.2023.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Caffeine (CAF) is a challenging natural bioactive compound with proven antiaging efficacy. However, being hydrophilic hampers its permeation through the skin. Our aim is to develop a novel CAF-loaded nano-cosmeceutical tool counteracting skin photoaging via improving CAF skin permeation using a bioactive nanocarrier. Caffeinated hyalurosomes are novel biocompatible antiaging nanoplatforms designed by immobilization of phospholipid vesicles with a hyaluronan polymer. Physicochemical properties of the selected hyalurosomes formulation showed nano-sized vesicles (210.10 ± 1.87 nm), with high zeta potential (-31.30 ± 1.19 mv), and high encapsulation efficiency (84.60 ± 1.05%). In vitro release results showed outstanding sustained release profile from caffeinated hyalurosomes compared to the CAF-loaded in conventional gel over 24 h. The in-vivo study revealed a photoprotective effect of caffeinated hyalurosomes, reflected from the intact and wrinkling-free skin. Results of biochemical analyses of oxidative stress, pro-inflammatory mediators, and anti-wrinkling markers further confirmed the efficacy of the prepared hyalurosomes compared to the CAF conventional gel. Finally, histopathological examination demonstrated normal histological structures of epidermal layers with minimal inflammatory cell infiltrates in the caffeinated hyalurosomes group compared to the positive control group. Conclusively, caffeinated hyalurosomes successfully achieved enhanced CAF loading and penetration into the skin besides the hydration effect of hyaluronan. Consequently, the developed delivery system presents a promising skin protection nano-platforms via the double effects of both hyaluronan and CAF, hence it guards against skin photodamage.
Collapse
Affiliation(s)
- Manal A Elsheikh
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Passent M.E. Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, P.O. Box 1029, Egypt
| | - Mohamed A. Khattab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt
| | | | - Mohamed H. Noureldin
- Department of Biochemistry, Division of Clinical and Biological Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, P.O. Box 1029, Egypt
| | - Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt,Corresponding author at: Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, El-Bahira, Egypt Post Office, P.O. Box 22511, Damanhour, Egypt.
| |
Collapse
|
7
|
Liatsopoulou A, Varvaresou A, Mellou F, Protopapa E. Iontophoresis in dermal delivery: A review of applications in dermato-cosmetic and aesthetic sciences. Int J Cosmet Sci 2022; 45:117-132. [PMID: 36326063 DOI: 10.1111/ics.12824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Iontophoresis is defined as the use of electric current to drive molecules across cell membranes through an electrolyte solution. In therapeutic context, it is used to facilitate the administration of bioactive substances, either systemically or locally. The technique presents various advantages and that is why it has been successfully used by a plethora of medical sciences. The constantly developing field of dermato-cosmetic science has also taken advantage of the possibilities offered by iontophoresis, aiming to enhance the delivery of the applied active ingredients and, thus, induce the desired cosmetic effects. METHODS The available literature was examined for evidence-based reports of safe and successful iontophoresis of pharmaceutical and cosmetic substances, in order to explore different iontophoretic applications in the field of dermato-cosmetic and dermato-aesthetic sciences. CONCLUSION Iontophoresis can be safely and successfully used in the treatment of ageing, photoageing, hyperpigmentation, oxidative stress, hair loss, hair removal, acne, acne sequelae and cellulite, providing many possibilities for enhanced treatment results.
Collapse
Affiliation(s)
- Aikaterini Liatsopoulou
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Caring Sciences, University of West Attica, Athens, Greece
| | - Athanasia Varvaresou
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Caring Sciences, University of West Attica, Athens, Greece
| | - Fotini Mellou
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Caring Sciences, University of West Attica, Athens, Greece
| | - Evangelia Protopapa
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Division of Aesthetics and Cosmetic Science, Department of Biomedical Sciences, School of Health and Caring Sciences, University of West Attica, Athens, Greece
| |
Collapse
|
8
|
Rathod S, Desai H, Patil R, Sarolia J. Non-ionic Surfactants as a P-Glycoprotein(P-gp) Efflux Inhibitor for Optimal Drug Delivery-A Concise Outlook. AAPS PharmSciTech 2022; 23:55. [PMID: 35043278 DOI: 10.1208/s12249-022-02211-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Significant research efforts have been devoted to unraveling the mystery of P-glycoprotein(P-gp) in drug delivery applications. The efflux membrane transporter P-gp is widely distributed in the body and accountable for restricting drug absorption and bioavailability. For these reasons, it is the primary cause of developing multidrug resistance (MDR) in most drug delivery applications. Therefore, P-gp inhibitors must be explored to address MDR and the low bioavailability of therapeutic substrates. Several experimental models in kinetics and dynamic studies identified the sensitivity of drug molecules and excipients as a P-gp inhibitor. In this review, we aimed to emphasize nonionic surface-active agents for effective reversal of P-gp inhibition. As it is inert, non-toxic, noncharged, and quickly reaching the cytosolic lipid membrane (the point of contact with P-gp efflux protein) enables it to be more efficient as P-gp inhibitors. Moreover, nonionic surfactant improves drug absorption and bioavailability through the various mechanism, involving (i) association of drug with surfactant improves solubilization, facilitating its cell penetration and absorption; (ii) weakening the lateral membrane packing density, facilitating the passive drug influx; and (iii) inhibition of the ATP binding cassette of transporter P-glycoprotein. The application of nonionic surfactant as P-gp inhibitors is well established and supported by various experiments. Altogether, herein, we have primarily focused on various nonionic surfactants and their development strategies to conquer the MDR-causing effects of P-gp efflux protein in drug delivery. Graphical Abstract.
Collapse
|
9
|
QbD based formulation optimization of semi-solid lipid nanoparticles as nano-cosmeceuticals. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Teaima M, Abdelmonem R, Adel YA, El-Nabarawi MA, El-Nawawy TM. Transdermal Delivery of Telmisartan: Formulation, in vitro, ex vivo, Iontophoretic Permeation Enhancement and Comparative Pharmacokinetic Study in Rats. Drug Des Devel Ther 2021; 15:4603-4614. [PMID: 34785889 PMCID: PMC8590984 DOI: 10.2147/dddt.s327860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The purpose of this study was to prepare telmisartan transethosomes, incorporate them into a gel, evaluate them for in vitro drug release and in vivo permeation using iontophoresis to enhance their transdermal delivery. Materials and Methods TE formulae were prepared using various surfactants (SAAs), different ethanol concentrations, and different phospholipid-to-SAA ratios with different cholesterol ratios, characterized according to their entrapment efficiency percentage (EE%), zeta potential (ZP), particle size (PS), and polydispersity index (PDI). The optimum three formulae were incorporated into a gel, evaluated physically, in vitro dissolution, and ex vivo drug permeation using rat skin and Iontophoresis was performed on the best formula. Results The optimum three formulae (F29, F31, F32) had an EE% of 97±0.26%, 89±0.25% and 88±0.17%, PS of 244±5.88 nm, 337±4.6 nm and 382.2±3.06 nm, PDI of 0.57±1.9, 0.5±1.4 and 0.63±2.2 and ZP of −31.6±1.59 mV, −28.3±3.79 mV and −31±5.65, respectively. Selecting F29 for in vivo study by iontophoretic enhancement, Cmax was increased by 1.85 folds compared to the commercial oral tablet and by 1.5 folds compared to transdermal gel. Tmax decreased by half using iontophoresis compared to commercial tablets and transdermal gel. Conclusion The transethosomal formulation of telmisartan enhanced its transdermal absorption and increased its bioavailability as well. Iontophoresis was used to increase maximum plasma concentration and reduce Tmax by half.
Collapse
Affiliation(s)
- Mahmoud Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, 12566, Egypt
| | - Yomna A Adel
- Department of Pharmaceutics, Egyptian Drug Authority, Cairo, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | |
Collapse
|
11
|
Pharmacokinetic evaluation of the synergistic effect of raloxifene loaded transfersomes for transdermal delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102545] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Kassem AA, Abd El-Alim SH. Vesicular Nanocarriers: A Potential Platform for Dermal and Transdermal Drug Delivery. NANOPHARMACEUTICALS: PRINCIPLES AND APPLICATIONS VOL. 2 2021. [DOI: 10.1007/978-3-030-44921-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Nigro F, Cerqueira Pinto CDS, dos Santos EP, Mansur CRE. Niosome-based hydrogel as a potential drug delivery system for topical and transdermal applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1848833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fiammetta Nigro
- Institute of Macromolecules "Professora Eloisa Mano"/Laboratory of Macromolecules and Colloids in the Oil Industry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Claudia Regina Elias Mansur
- Institute of Macromolecules "Professora Eloisa Mano"/Laboratory of Macromolecules and Colloids in the Oil Industry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Drug delivery systems integrated with conventional and advanced treatment approaches toward cellulite reduction. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Teaima MH, El Mohamady AM, El-Nabarawi MA, Mohamed AI. Formulation and evaluation of niosomal vesicles containing ondansetron HCL for trans-mucosal nasal drug delivery. Drug Dev Ind Pharm 2020; 46:751-761. [PMID: 32250181 DOI: 10.1080/03639045.2020.1753061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Ondansetron HCl is a (5-HT3) serotonin receptor antagonist, used as anti-emetic drug in combination with anticancer agents. Conventional dosage forms have poor bioavailability and patient compliance. These problems can be reduced by the use of nasal niosomal thermo-reversible in situ gelling system. Niosomes were formulated using various surfactants (Span 60, Span 80, Tween 20, and Tween 80) in different ratios using the thin-film hydration technique. Niosomes were evaluated for particle size, zeta potential, transmission electron microscopy (TEM) imaging, drug entrapment efficiency, and in vitro drug release. Niosomes prepared using Span 60 and cholesterol in the ratio 1:1 (F5) showed higher entrapment efficiency (76.13 ± 1.2%) and in vitro drug release (91.76%) after 12 h was optimized. The optimized niosomes were developed into thermo-reversible in situ gel, composed of Poloxamer 407 and sodium carboxymethyl cellulose, prepared by cold method technique. Compatibility study (FTIR, DSC) was made for drugs and excipients that showed no significant interaction. The gel formulation G5 showed the most suitable gelation temperature (31 °C), viscosity (1250 mpoise), bioadhesion force (5860 ± 28 dyne/cm2), and in vitro drug release (70.6%) after 12 h. Comparative in vivo pharmacokinetic study on rabbits showed a sustained release and higher relative bioavailability of the prepared nasal in situ gel compared to similar dose of oral tablets (202.4%) which make ondansetron HCl niosomal nasal thermo-sensitive in situ gel a more convenient dosage form for the administration of ondansetron HCl than oral tablets.
Collapse
Affiliation(s)
- Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed M El Mohamady
- Department of Pharmaceutics and Industrial Pharmacy, Military Medical Academy, Cairo, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Amir I Mohamed
- Department of Pharmaceutics and Industrial Pharmacy, Military Medical Academy, Cairo, Egypt
| |
Collapse
|
16
|
Chen S, Hanning S, Falconer J, Locke M, Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm 2019; 144:18-39. [PMID: 31446046 DOI: 10.1016/j.ejpb.2019.08.015] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 01/17/2023]
Abstract
Development of nanocarriers for drug delivery has received considerable attention due to their potential in achieving targeted delivery to the diseased site while sparing the surrounding healthy tissue. Safe and efficient drug delivery has always been a challenge in medicine. During the last decade, a large amount of interest has been drawn on the fabrication of surfactant-based vesicles to improve drug delivery. Niosomes are self-assembled vesicular nano-carriers formed by hydration of non-ionic surfactant, cholesterol or other amphiphilic molecules that serve as a versatile drug delivery system with a variety of applications ranging from dermal delivery to brain-targeted delivery. A large number of research articles have been published reporting their fabrication methods and applications in pharmaceutical and cosmetic fields. Niosomes have the same advantages as liposomes, such as the ability to incorporate both hydrophilic and lipophilic compounds. Besides, niosomes can be fabricated with simple methods, require less production cost and are stable over an extended period, thus overcoming the major drawbacks of liposomes. This review provides a comprehensive summary of niosomal research to date, it provides a detailed overview of the formulation components, types of niosomes, effects of components on the formation of niosomes, fabrication and purification methods, physical characterization techniques of niosomes, recent applications in pharmaceutical field such as in oral, ocular, topical, pulmonary, parental and transmucosal drug delivery, and cosmetic applications. Finally, limitations and the future outlook for this delivery system have also been discussed.
Collapse
Affiliation(s)
- Shuo Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Sara Hanning
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - James Falconer
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Level 4, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Michelle Locke
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Department of Plastic and Reconstructive Surgery, Middlemore Hospital, Counties Manukau District Health Board, Private Bag 93311, Otahuhu, Auckland 1640, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand.
| |
Collapse
|
17
|
Khalil RM, Abdelbary A, Kocova El-Arini S, Basha M, El-Hashemy HA. Evaluation of bilosomes as nanocarriers for transdermal delivery of tizanidine hydrochloride:in vitroandex vivooptimization. J Liposome Res 2018; 29:171-182. [DOI: 10.1080/08982104.2018.1524482] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Rawia M. Khalil
- Department of Pharmaceutical Technology, National Research Centre, Giza, Egypt
| | - Ahmed Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Mona Basha
- Department of Pharmaceutical Technology, National Research Centre, Giza, Egypt
| | | |
Collapse
|