1
|
Sakran W, Abdel-Hakim M, Teiama MS, Abdel-Rashid RS. Febuxostat ternary inclusion complex using SBE7-βCD in presence of a water-soluble polymer: physicochemical characterization, in vitro dissolution, and in vivo evaluation. Drug Deliv Transl Res 2024; 14:1909-1922. [PMID: 38185775 PMCID: PMC11153268 DOI: 10.1007/s13346-023-01496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/09/2024]
Abstract
Febuxostat (FBX), a potent xanthine oxidase inhibitor, is widely used as a blood uric acid-reducing agent and has recently shown a promising repurposing outcome as an anti-cancer. FBX is known for its poor water solubility, which is the main cause of its weak oral bioavailability. In a previous study, we developed a binary system complex between FBX and sulfobutylether-β-cyclodextrin (SBE7-βCD) with improved dissolution behavior. The aim of the current study was to investigate the effect of incorporating a water-soluble polymer with a binary system forming a ternary one, on further enhancement of FBX solubility and dissolution rate. In vivo oral bioavailability was also studied using LC-MS/MS chromatography. The polymer screening study revealed a marked increment in the solubility of FBX with SBE7-βCD in the presence of 5% w/v polyethylene glycol (PEG 6000). In vitro release profile showed a significant increase in the dissolution rate of FBX from FBX ternary complex (FTC). Oral in vivo bioavailability of prepared FTC showed more than threefold enhancement in Cmax value (17.05 ± 2.6 µg/mL) compared to pure FBX Cmax value (5.013 ± 0.417 µg/mL) with 257% rise in bioavailability. In conclusion, the association of water-soluble polymers with FBX and SBE7-βCD system could significantly improve therapeutic applications of the drug.
Collapse
Affiliation(s)
- Wedad Sakran
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Helwan University, Ain Helwan, POB 11795, Cairo, Egypt
| | - Mai Abdel-Hakim
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Helwan University, Ain Helwan, POB 11795, Cairo, Egypt
| | - Mohammed S Teiama
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Helwan University, Ain Helwan, POB 11795, Cairo, Egypt.
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Galala University, Attaka, 43713, Suez, Egypt.
| | - Rania S Abdel-Rashid
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Helwan University, Ain Helwan, POB 11795, Cairo, Egypt
| |
Collapse
|
2
|
Mulenga G, Alahmed TAA, Sami F, Majeed S, Ali MS, Le JLJ, Rhu CLQ, Nair RS, Hasan N, Ansari MT. QbD Assisted Systematic Review for Optimizing the Selection of PVP as a Ternary Substance in Enhancing the Complexation Efficiency of Cyclodextrins: a Pilot Study. AAPS PharmSciTech 2024; 25:134. [PMID: 38862663 DOI: 10.1208/s12249-024-02845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Inclusion complexes require higher concentration of Beta cyclodextrins (βCD) resulting in increased formulation bulk, toxicity, and production costs. This systematic review offers a comprehensive analysis using Quality by design (QbD) as a tool to predict potential applications of Polyvinylpyrrolidone (PVP) as a ternary substance to address issues of inclusion complexes. We reviewed 623 documents from 2013 to 2023 and Eighteen (18) research papers were selected for statistical and meta-analysis using the QbD concept to identify the most critical factors for selecting drugs and effect of PVP on inclusion complexes. The QbD analysis revealed that Molecular weight (MW), Partition coefficient (Log P), and the auxiliary substance ratio directly affected complexation efficiency (CE), thermodynamic stability in terms of Gibbs free energy (ΔG), and percent drug release. However, Stability constant (Ks) remained unaffected by any of these parameters. The results showed that low MW (250), median Log P (6), and a βCD: PVP ratio of 2:3 would result in higher CE, lower G, and improved drug release. PVP improves drug solubility, enhances delivery and therapeutic outcomes, and counteracts increased drug ionization due to decreased pH. In certain cases, its bulky nature and hydrogen bonding with CD molecules can form non-inclusion complexes. The findings of the study shows that there is potential molecular interaction between PVP and β-cyclodextrins, which possibly enhances the stability of inclusion complexes for drug with low MW and log P values less than 9. The systematic review shows a comprehensive methodology based on QbD offers a replicable template for future investigations into drug formulation research.
Collapse
Affiliation(s)
- Glovanna Mulenga
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Teejan Ameer Abed Alahmed
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Farheen Sami
- School of Pharmaceutical Sciences, CT University, Ferozepur Road, Sidhwan Khurd, 142024, India
| | - Shahnaz Majeed
- Department of Basic Science, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450, Ipoh, Malaysia
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Janice Lo Jia Le
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Carol Lee Qhai Rhu
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Rajesh Sreedharan Nair
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Nadeem Hasan
- Department of Pharmaceutics, MAM College of Pharmacy, P&T Colony, Kalaburgi, 585102, India
| | - Mohammed Tahir Ansari
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
3
|
Mugundhan SL, Balasubramaniyan P, Narayanasamy D, Mohan M. Curcumin- β-Cyclodextrin Molecular Inclusion Complex: A Water-Soluble Complex in Fast-dissolving Tablets for the Treatment ofNeurodegenerative Disorders. Pharm Nanotechnol 2024; 12:365-377. [PMID: 38192139 DOI: 10.2174/0122117385273171231120051021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Orally disintegrating tablets (ODTs) have become an excellent choice for delivering drugs as their palatability is greatly improved. In this work, β-cyclodextrin has been used to improve the solubility of curcumin by encapsulating it into the hydrophobic cavity for the treatment of neurodegenerative disorders. OBJECTIVES The current study aimed to present the design, formulation, and optimisation of fastdissolving oral tablets of curcumin- β-cyclodextrin molecular inclusion complex using a 32-factorial design. METHODS The drug-excipient compatibility was studied by FTIR spectroscopy. The inclusion complex of curcumin-β-cyclodextrin was prepared using solvent casting and confirmed using XRD studies. Powder blends were evaluated for flow properties. Tablets prepared by direct compression were evaluated for post-compression parameters. Further, the effect of formulation variables, such as sodium starch glycolate (X1) and Neusilin® ULF2 (X2), on various responses, including disintegration time and dissolution at 2 hours, was studied using statistical models. RESULTS Post-compression parameters, i.e., hardness (4.4-5 kg/cm2), thickness (3.82-3.93 mm), weight variation (±7.5%), friability (< 1%), wetting time (51-85 seconds) and drug content (96.28- 99.32%) were all found to be within the permissible limits and the disintegration time of tablets with super-disintegrants ranged between 45-58 seconds. The in-vitro dissolution profile of tablets showed that higher SSG and Neuslin® ULF2 levels promoted drug release. For statistical analysis, the 2FI model was chosen. Optimised variables for formulation have been determined and validated with the experimental findings based on the significant desirability factor. CONCLUSION The current study reveals the validated curcumin-β-cyclodextrin inclusion complex fastdissolving tablets with SSG and Neusilin® ULF2 to be an ideal choice for effectively treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Sruthi Laakshmi Mugundhan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | | | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Mothilal Mohan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
4
|
Wu X, Yang Y. Research progress on drug delivery systems for curcumin in the treatment of gastrointestinal tumors. World J Gastrointest Oncol 2023; 15:1342-1348. [PMID: 37663948 PMCID: PMC10473931 DOI: 10.4251/wjgo.v15.i8.1342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/11/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023] Open
Abstract
Curcumin is a natural compound with a diketone structure, which can control the growth, metastasis, recurrence, neovascularization, invasion, and drug resistance of gastrointestinal tumors by inhibiting nuclear factor κB, overexpression of tumor cells, vascular endothelial growth factor, etc. However, due to the low bioavailability of curcumin formulation, it did not fully exert its pharmacological effects, and its application and development in the treatment of various malignant tumors are still limited. This review summarizes the research on drug delivery systems of curcumin combating digestive tract tumors in order to further reduce the toxic side effects of curcumin-containing drugs and fully exert their pharmacological activities, and improve their bioavailability and clinical value.
Collapse
Affiliation(s)
- Xin Wu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| | - Yang Yang
- Department of Respiratory Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang Province, China
| |
Collapse
|
5
|
Stura I, Munir Z, Cavallo L, Torri L, Mandras N, Banche G, Spagnolo R, Pertusio R, Cavalli R, Guiot C. Combining Blue Light and Yellow Curcumin to Obtain a "Green" Tool for Berry Preservation against Bacterial Contamination: A Preliminary Investigation. Foods 2023; 12:foods12102038. [PMID: 37238856 DOI: 10.3390/foods12102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Background: According to recent studies, tens of millions of tons of fruit are wasted each year in Europe in primary production and home/service consumption. Among fruits, berries are most critical because they have a shorter shelf life and a softer, more delicate, and often edible skin. Curcumin is a natural polyphenolic compound extracted from the spice turmeric (Curcuma longa L.) which exhibits antioxidant, photophysical, and antimicrobial properties that can be further enhanced by photodynamic inactivation of pathogens when irradiated with blue or ultraviolet light. Materials and methods: Multiple experiments were performed in which berry samples were sprayed with a complex of β-cyclodextrin containing 0.5 or 1 mg/mL of curcumin. Photodynamic inactivation was induced by irradiation with blue LED light. Antimicrobial effectiveness was assessed with microbiological assays. The expected effects of oxidation, curcumin solution deterioration, and alteration of the volatile compounds were investigated as well. Results: The treatment with photoactivated curcumin solutions reduced the bacterial load (3.1 vs. 2.5 colony forming units/mL (UFC/ml) in the control and treated groups; p-value = 0.01), without altering the fruit organoleptic and antioxidant properties. Conclusions: The explored method is a promising approach to extend berries' shelf life in an easy and green way. However, further investigations of the preservation and general properties of treated berries are still needed.
Collapse
Affiliation(s)
- Ilaria Stura
- Department of Neurosciences, University of Turin, 10125 Torino, Italy
| | - Zunaira Munir
- Department of Neurosciences, University of Turin, 10125 Torino, Italy
| | - Lorenza Cavallo
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Torino, Italy
| | - Luisa Torri
- University of Gastronomic Sciences, 12042 Pollenzo, Italy
| | - Narcisa Mandras
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Torino, Italy
| | - Giuliana Banche
- Department of Public Health and Pediatric Sciences, University of Turin, 10126 Torino, Italy
| | - Rita Spagnolo
- Department of Drug Sciences and Technologies, University of Turin, 10125 Torino, Italy
| | - Raffaele Pertusio
- Department of Neurosciences, University of Turin, 10125 Torino, Italy
| | - Roberta Cavalli
- Department of Drug Sciences and Technologies, University of Turin, 10125 Torino, Italy
| | - Caterina Guiot
- Department of Neurosciences, University of Turin, 10125 Torino, Italy
| |
Collapse
|
6
|
Ma J, Fan J, Xia Y, Kou X, Ke Q, Zhao Y. Preparation of aromatic β-cyclodextrin nano/microcapsules and corresponding aromatic textiles: A review. Carbohydr Polym 2023; 308:120661. [PMID: 36813345 DOI: 10.1016/j.carbpol.2023.120661] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Fragrance finishing of textiles is receiving substantial interest, with aromatherapy being one of the most popular aspects of personal health care. However, the longevity of aroma on textiles and presence after subsequent launderings are major concerns for aromatic textiles directly loaded with essential oils. These drawbacks can be weakened by incorporating essential oil-complexed β-cyclodextrins (β-CDs) onto various textiles. This article reviews various preparation methods of aromatic β-cyclodextrin nano/microcapsules, as well as a wide variety of methods for the preparation of aromatic textiles based on them before and after forming, proposing future trends in preparation processes. The review also covers the complexation of β-CDs with essential oils, and the application of aromatic textiles based on β-CD nano/microcapsules. Systematic research on the preparation of aromatic textiles facilitates the realization of green and simple industrialized large-scale production, providing needed application potential in the fields of various functional materials.
Collapse
Affiliation(s)
- Jiajia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jiaxuan Fan
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Yichang Xia
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qinfei Ke
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yi Zhao
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China.
| |
Collapse
|
7
|
Minhas MU, Khan KU, Sarfraz M, Badshah SF, Munir A, Barkat K, Basit A, Arafat M. Polyvinylpyrrolidone K-30-Based Crosslinked Fast Swelling Nanogels: An Impeccable Approach for Drug's Solubility Improvement. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5883239. [PMID: 36060130 PMCID: PMC9439932 DOI: 10.1155/2022/5883239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/31/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Poor solubility is a global issue of copious pharmaceutical industries as large number of drugs in development stage as well as already marketed products are poorly soluble which results in low dissolution and ultimately dosage increase. Current study is aimed at developing a polyvinylpyrrolidone- (PVP-K30-) based nanogel delivery system for solubility enhancement of poorly soluble drug olanzapine (OLP), as solubilization enhancement is the most noteworthy application of nanosystems. Crosslinking polymerization with subsequent condensation technique was used for the synthesis of nanogels, a highly responsive polymeric networks in drug's solubility. Developed nanogels were characterized by percent entrapment efficiency, sol-gel, percent swelling, percent drug loaded content (%DLC), percent porosity, stability, solubility, in vitro dissolution studies, FTIR, XRD, and SEM analysis. Furthermore, cytotoxicity study was conducted on rabbits to check the biocompatibility of the system. Particle size of nanogels was found with 178.99 ± 15.32 nm, and in vitro dissolution study exhibited that drug release properties were considerably enhanced as compared to the marketed formulation OLANZIA. The solubility studies indicated that solubility of OLP was noticeably improved up to 36.7-fold in phosphate buffer of pH 6.8. In vivo cytotoxicity study indicated that prepared PVP-K30-based formulation was biocompatible. On the basis of results obtained, the developed PVP-K30-co-poly (AMPS) nanogel delivery system is expected to be safe, effective, and cost-effective for solubility improvement of poorly soluble drugs.
Collapse
Affiliation(s)
| | | | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain, UAE
| | | | - Abubakar Munir
- Faculty of Pharmacy, Superior University Lahore, Punjab, Pakistan
| | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Punjab, Pakistan
| | - Abdul Basit
- Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain, UAE
| |
Collapse
|
8
|
Suvarna V, Bore B, Bhawar C, Mallya R. Complexation of phytochemicals with cyclodextrins and their derivatives- an update. Biomed Pharmacother 2022; 149:112862. [PMID: 35339826 DOI: 10.1016/j.biopha.2022.112862] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 11/02/2022] Open
Abstract
Bioactive phytochemicals from natural source have gained tremendous interest over several decades due to their wide and diverse therapeutic activities playing key role as functional food supplements, pharmaceutical and nutraceutical products. Nevertheless, their application as therapeutically active moieties and formulation into novel drug delivery systems are hindered due to major drawbacks such as poor solubility, bioavailability and dissolution rate and instability contributing to reduction in bioactivity. These drawbacks can be effectively overcome by their complexation with different cyclodextrins. Present article discusses complexation of phytochemicals varying from flavonoids, phenolics, triterpenes, and tropolone with different natural and synthetic cyclodextrins. Moreover, the article summarizes complexation methods, complexation efficiency, stability, stability constants and enhancement in rate and extent of dissolution, bioavailability, solubility, in vivo and in vitro activities of reported complexed phytochemicals. Additionally, the article presents update of published patent details comprising of complexed phytochemicals of therapeutic significance. Thus, phytochemical cyclodextrin complexes have tremendous potential for transformation into drug delivery systems as substantiated by significant outcome of research findings.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India.
| | - Bhunesh Bore
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| | - Chaitanya Bhawar
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| | - Rashmi Mallya
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| |
Collapse
|
9
|
Jafar M, Khalid MS, Alghamdi H, Amir M, Al Makki SA, Alotaibi OS, Al Rmais AA, Imam SS, Alshehri S, Gilani SJ. Formulation of Apigenin-Cyclodextrin-Chitosan Ternary Complex: Physicochemical Characterization, In Vitro and In Vivo Studies. AAPS PharmSciTech 2022; 23:71. [PMID: 35146576 DOI: 10.1208/s12249-022-02218-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/17/2022] [Indexed: 01/01/2023] Open
Abstract
The current investigation was performed with an aim to improve the aqueous solubility, dissolution rate, and thus the biological activity of apigenin (APG) using the solubilizers hydroxypropyl beta-cyclodextrin (HPβCD) and chitosan (CTSN). A binary and ternary inclusion complexes of APG with HPβCD and CTSN were prepared by physical mixing, fusion, and solvent evaporation methods. The liquid state characterization of the APG, the solubilizers, and the physical and chemical interactions between them was done through phase solubility approach. The solid-state characterization was performed by proton nuclear magnetic resonance (1H-NMR), differential scanning calorimetry (DSC), and X-ray diffractometry (XRD). The in vitro dissolution test and antioxidant activity and in vivo anti-inflammatory activity of the ternary inclusion complex in albino rats were performed to assess the performance of the APG. Phase solubility study results revealed a remarkable increase in apparent stability constant (Kc) and complexation efficiency (CE) of HPβCD in presence of CTSN in ternary complex with above 8 folds more increment in solubility of APG than its binary complex. The in vitro dissolution rate, antioxidant activity, and the anti-inflammatory effect of the APG ternary inclusion complex were found to be significantly higher than that of pure APG. Solid state characterization confirmed the formation of a ternary inclusion complex. 1H-NMR study gave more insight at molecular level into how different groups of APG were responsible for complex formation with the HPβCD and how CTSN was significantly influencing on the APG-HPβCD complex formed. Nevertheless, pharmacokinetic and histopathological studies of our APG-HPβCD-CTSN ternary complex would yield much rewarding results.
Collapse
|
10
|
Lateh L, Kaewnopparat N, Yuenyongsawad S, Panichayupakaranant P. Enhancing the water-solubility of curcuminoids-rich extract using a ternary inclusion complex system: Preparation, characterization, and anti-cancer activity. Food Chem 2022; 368:130827. [PMID: 34411855 DOI: 10.1016/j.foodchem.2021.130827] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/05/2023]
Abstract
Curcuminoids are known to exert diverse pharmacological effects and used in some pharmaceutical formulations. This study describes the preparation, characterization, and enhancement in the solubility and anticancer activity of a curcuminoids-rich extract (CRE) using a ternary inclusion complex system. CRE containing 88.9% w/w curcuminoids was prepared using a 'green' microwave extraction coupled with fractionation on a column of hydrophobic adsorbent resin. The ternary complex consisting of CRE, hydroxylpropyl-β-cyclodextrin and polyvinylpyrrolidone K30 was prepared using the solvent evaporation method and thoroughly characterized using Fourier-transform infrared spectroscopy, powder X-ray diffractograms, differential scanning calorimetry and scanning electron microscopy. The ternary complex of CRE improved the water-solubility of curcuminoids (up to 70.3 µg/mL) as well as the dissolution rate when compared to those of CRE (0 µg/mL). In addition, the ternary complex exhibited significantly stronger anticancer activity against human lung adenocarcinoma (A-549), human cervical adenocarcinoma (HeLa) and human colon adenocarcinoma (HT-29) cell lines than CRE.
Collapse
Affiliation(s)
- Likit Lateh
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Nattha Kaewnopparat
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand; Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Supreeya Yuenyongsawad
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand; Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai 90112, Thailand.
| |
Collapse
|
11
|
Zafar A, Alruwaili NK, Imam SS, Alsaidan OA, Alharbi KS, Mostafa EM, Musa A, Gilani SJ, Ghoneim MM, Alshehri S, Sultana S, Mohan S. Formulation of ternary genistein β-cyclodextrin inclusion complex: In vitro characterization and cytotoxicity assessment using breast cancer cell line. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Formulation of Genistein-HP β Cyclodextrin-Poloxamer 188 Ternary Inclusion Complex: Solubility to Cytotoxicity Assessment. Pharmaceutics 2021; 13:pharmaceutics13121997. [PMID: 34959278 PMCID: PMC8707042 DOI: 10.3390/pharmaceutics13121997] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
The current study was designed to prepare the inclusion complex Genistein (GS) using Hydroxypropyl β cyclodextrin (HP β CD) and poloxamer 188 (PL 188). The binary inclusion complex (GS BC) and ternary inclusion complex (GS TC) were developed by microwave irradiation technique and evaluated for a comparative dissolution study. Further, the samples were assessed for FTIR, DSC, XRD, and NMR for the confirmation of complex formation. Finally, antioxidant and antimicrobial studies and cytotoxicity studies on a breast cancer (MCF-7) cell line were conducted. The dissolution study result showed a marked increment in GS dissolution/release after incorporation in binary (GS: HP β CD, 1:1) and ternary (GS: HP β CD: PL 188; 1:1:0.5) inclusion complexes. Moreover, the ternary complex exhibited a significant enhancement (p < 0.05) in dissolution than did the binary complexes. This might be due to the presence of PL 188, which helps in solubility enhancement of GS. DSC, XRD and SEM evaluation confirmed the modification in the structure of GS. FTIR and NMR results indicated the formation of an inclusion complex. The antioxidant and antimicrobial activity results revealed that GS TC has shown significant (p < 0.05) higher activity than pure GS. The cytotoxicity study results also depicted concentration-dependent cytotoxicity. GS TC exhibited significantly (p < 0.05) high cytotoxicity to cancer cells (IC50 = 225 µg/mL) than pure GS (IC50 = 480 µg/mL). Finally, it was concluded that a remarkable enhancement in the dissolution was observed after the inclusion of GS in the ternary complex and it therefore has significant potential for the treatment of breast cancer.
Collapse
|