1
|
Jiang L, Li J, Yang R, Chen S, Wu Y, Jin Y, Wang J, Weng Q, Wang J. Effect of hydrogel drug delivery system for treating ulcerative colitis: A preclinical meta-analysis. Int J Pharm 2024; 659:124281. [PMID: 38802026 DOI: 10.1016/j.ijpharm.2024.124281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Hydrogel drug delivery systems (DDSs) for treating ulcerative colitis (UC) have garnered attention. However, there is a lack of meta-analysis summarizing their effectiveness. Therefore, this study aimed to conduct a meta-analysis of pre-clinical evidence comparing hydrogel DDSs with free drug administration. Subgroup analyses were performed based on hydrogel materials (polysaccharide versus non-polysaccharide) and administration routes of the hydrogel DDSs (rectal versus oral). The outcome indicators included colon length, histological scores, tumor necrosis factor-α (TNF-α), zonula occludens protein 1(ZO-1), and area under the curve (AUC). The results confirmed the therapeutic enhancement of the hydrogel DDSs for UC compared with the free drug group. Notably, no significant differences were found between polysaccharide and non-polysaccharide materials, however, oral administration was found superior regarding TNF-α and AUC. In conclusion, oral hydrogel DDSs can serve as potential excellent dosage forms in oral colon -targeting DDSs, and in the design of colon hydrogel delivery systems, polysaccharides do not show advantages compared with other materials.
Collapse
Affiliation(s)
- Lan Jiang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China
| | - Jia Li
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Runkun Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Shunpeng Chen
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Yongjun Wu
- Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China; State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yuanyuan Jin
- Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Center (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang 312500, China.
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310007, China; Taizhou Institute of Zhejiang University, Zhejiang university, Taizhou 318000, China; Beijing Life Science Academy, Beijing 102200, China.
| |
Collapse
|
2
|
Amulya E, Bahuguna D, Negi M, Phatale V, Sikder A, Vambhurkar G, Katta CB, Dandekar MP, Madan J, Srivastava S. Lipid engineered nanomaterials: A novel paradigm shift for combating stroke. APPLIED MATERIALS TODAY 2024; 38:102194. [DOI: 10.1016/j.apmt.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Nasser N, Hathout RM, Abd-Allah H, Sammour OA. Simplex Lattice Design and Machine Learning Methods for the Optimization of Novel Microemulsion Systems to Enhance p-Coumaric Acid Oral Bioavailability: In Vitro and In Vivo Studies. AAPS PharmSciTech 2024; 25:56. [PMID: 38448576 DOI: 10.1208/s12249-024-02766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024] Open
Abstract
Novel p-coumaric acid microemulsion systems were developed to circumvent its absorption and bioavailability challenges. Simplex-lattice mixture design and machine learning methods were employed for optimization. Two optimized formulations were characterized using in vitro re-dispersibility and cytotoxicity on various tumor cell lines (MCF-7, CaCO2, and HepG2). The in vivo bioavailability profiles of the drug loaded in the two microemulsion systems and in the suspension form were compared. The optimized microemulsions composed of Labrafil M1944 CS (5.67%)/Tween 80 (38.71%)/Labrasol (38.71%)/water (16.92%) and Capryol 90 (0.50%)/Transcutol P (26.67%)/Tween 80 (26.67%)/Labrasol (26.67%)/water (19.50%), respectively. They revealed uniform and stable p-coumaric acid-loaded microemulsion systems with a droplet size diameter of about 10 nm. The loaded microemulsion formulations enhanced the drug re-dispersibility in contrast to the drug suspension which exhibited 5 min lag time. The loaded formulae were significantly more cytotoxic on all cell lines by 11.98-16.56 folds on MCF-7 and CaCo2 cells and 47.82-98.79 folds on HepG2 cells higher than the pure drug. The optimized microemulsions were 1.5-1.8 times more bioavailable than the drug suspension. The developed p-coumaric acid microemulsion systems could be considered a successful remedy for diverse types of cancer.
Collapse
Affiliation(s)
- Nayera Nasser
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo, 11566, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo, 11566, Egypt.
| | - Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo, 11566, Egypt
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo, 11566, Egypt
| |
Collapse
|
4
|
Hathout RM, Ishak RAH, Shakshak DH. Do the chitosan nanoparticles really augment the drugs' transdermal fluxes: ending the debate using meta-analysis. Expert Opin Drug Deliv 2024; 21:325-335. [PMID: 38340063 DOI: 10.1080/17425247.2024.2317935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION Transdermal delivery has been extensively investigated as a successful alternative to the oral and parenteral routes of administration. The use of polymeric nanoparticles as drug delivery systems through this route has always been controversial. The use of meta-analyses is a useful quantitative means to decide upon the efficiency of this type of vehicles transporting drugs through the skin. AREAS COVERED In this meta-analysis study, polymeric nanoparticles were quantitatively compared to conventional formulations in order to investigate the feasibility of using these particles in transdermal delivery. Natural versus synthetic polymeric sub-groups were also contrasted to determine the most efficient class for transdermal drug enhancement. EXPERT OPINION Meta-analyses are gaining ground in the drug delivery field as they can exploit the mines of the literature and pick up by statistical evidence the superior formulations administered through several routes of administration. This is the first study that utilized the transdermal fluxes as the meta-analysis study effect and could prove the superiority of natural polymeric nanoparticles in transdermal delivery. In our opinion, there is paucity in research work regarding this type of nanocarriers, specifically on chitosan nanoparticles. More studies are warranted for full exploitation of its benefits.
Collapse
Affiliation(s)
- Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania A H Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Doaa H Shakshak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Hathout RM, El-Marakby EM. Meta-Analysis: A Convenient Tool for the Choice of Nose-to-Brain Nanocarriers. Bioengineering (Basel) 2022; 9:647. [PMID: 36354558 PMCID: PMC9687115 DOI: 10.3390/bioengineering9110647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 08/30/2023] Open
Abstract
OBJECTIVES The intranasal route represents a high promising route of administration aiming for brain delivery. Yet, it represents one of the most difficult and complicated routes. Accordingly, scientists are in a continuous search for novel drug delivery vehicles such as the lipid and polymeric nanoparticles that are apt to enhance the bioavailability of the administered drugs to reach the brain. In this study, a certain number of publications were selected from different databases and literature. Meta-analysis studies using two different algorithms (DerSimonian-Laird and inverse variance) followed aiming to explore the published studies and confirm by evidence the superiority of nanocarriers in enhancing the brain bioavailability of various drugs. Furthermore, the quantitative comparison of lipid versus polymeric nanosystems was performed. METHODS The area under the curve (AUC) as an important pharmacokinetic parameter extracted from in vivo animal studies was designated as the "effect" in the performed meta-analysis after normalization. Forest plots were generated. KEY FINDINGS AND CONCLUSIONS The meta-analysis confirmed the augmentation of the AUC after the comparison with traditional preparations such as solutions and suspensions. Most importantly, lipid nanoparticles were proven to be significantly superior to the polymeric counterparts.
Collapse
Affiliation(s)
- Rania M. Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Cairo 11566, Egypt
| | | |
Collapse
|
6
|
Hathout RM. Do Polymeric Nanoparticles Really Enhance the Bioavailability of Oral Drugs? A Quantitative Answer Using Meta-Analysis. Gels 2022; 8:gels8020119. [PMID: 35200500 PMCID: PMC8872407 DOI: 10.3390/gels8020119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/15/2022] Open
Abstract
The oral route remains one of the most popular and important routes of administration for drugs—one that warrants the development of advanced drug delivery systems, such as polymeric nanoparticles capable of enhancing the absorption and bioavailability of the used drugs. In this work, a systematic review of published works on several databases, followed by a meta-analysis, were utilized in order to navigate the published studies and access literature-based evidence about the capability of polymeric nanoparticulate systems to augment the absorption and bioavailability of orally administered drugs. The pharmacokinetic parameter of the area under the curve (AUC) was utilized as the “effect” of this meta-analytical study. The meta-analysis demonstrated a significant increase in AUC compared to conventional formulations. Furthermore, comparing the synthetic polymeric nanoparticles, versus their naturally-based administered counterparts, as subgroups of the meta-analysis, revealed no significant differences.
Collapse
Affiliation(s)
- Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
7
|
|
8
|
Safwat S, Hathout RM, Ishak RA, Mortada ND. Elaborated survey in the scope of nanocarriers engineering for boosting chemotherapy cytotoxicity: A meta-analysis study. Int J Pharm 2021; 610:121268. [PMID: 34748812 DOI: 10.1016/j.ijpharm.2021.121268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023]
Abstract
Cancer is the prime cause of mortality throughout the world. Although the conventional chemotherapeutic agents damage the cancerous cells, they exert prominent injury to the normal cells owing to their lack of specificity. With advances in science, many research studies have been established to boost the cytotoxic effect of the chemotherapeutic agents via innovating novel nano-formulations having different variables. In the current meta-analysis study, combined data from different research articles were gathered for the evidence-based proof of the superiority of drug loaded nanocarriers over their corresponding conventional solutions in boosting the cytotoxic effect of chemotherapy in terms of IC50 values. The meta-analysis was subdivided into three subgroups; nanoparticles versus nanofibers, surface functionalized nanocarriers versus naked ones, and protein versus non-protein-based platforms. The different subgroups interestingly showed distinct scoring outcome data paving the road for cytotoxicity enhancement of the anti-cancer drugs in an evidence-based manner.
Collapse
Affiliation(s)
- Sally Safwat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt.
| | - Rania A Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| | - Nahed D Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbassia, Cairo, Egypt
| |
Collapse
|
9
|
Elmeligy S, Hathout RM, Khalifa SA, El-Seedi HR, Farag MA. Pharmaceutical manipulation of citrus flavonoids towards improvement of its bioavailability and stability. A mini review and a meta-analysis study. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|