1
|
Gomaa SE, Abbas HA, Mohamed FA, Ali MAM, Ibrahim TM, Abdel Halim AS, Alghamdi MA, Mansour B, Chaudhary AA, Elkelish A, Boufahja F, Hegazy WAH, Yehia FAZA. The anti-staphylococcal fusidic acid as an efflux pump inhibitor combined with fluconazole against vaginal candidiasis in mouse model. BMC Microbiol 2024; 24:54. [PMID: 38341568 PMCID: PMC10858509 DOI: 10.1186/s12866-024-03181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Candida albicans is the most common fungus that causes vaginal candidiasis in immunocompetent women and catastrophic infections in immunocompromised patients. The treatment of such infections is hindered due to the increasing emergence of resistance to azoles in C. albicans. New treatment approaches are needed to combat candidiasis especially in the dwindled supply of new effective and safe antifungals. The resistance to azoles is mainly attributed to export of azoles outside the cells by means of the efflux pump that confers cross resistance to all azoles including fluconazole (FLC). OBJECTIVES This study aimed to investigate the possible efflux pump inhibiting activity of fusidic acid (FA) in C. albicans resistant isolates and the potential use of Fusidic acid in combination with fluconazole to potentiate the antifungal activity of fluconazole to restore its activity in the resistant C. albicans isolates. METHODS The resistance of C. albicans isolates was assessed by determination of minimum inhibitory concentration. The effect of Fusidic acid at sub-inhibitory concentration on efflux activity was assayed by rhodamine 6G efflux assay and intracellular accumulation. Mice model studies were conducted to evaluate the anti-efflux activity of Fusidic acid and its synergistic effects in combination with fluconazole. Impact of Fusidic acid on ergosterol biosynthesis was quantified. The synergy of fluconazole when combined with Fusidic acid was investigated by determination of minimum inhibitory concentration. The cytotoxicity of Fusidic acid was tested against erythrocytes. The effect of Fusidic acid on efflux pumps was tested at the molecular level by real-time PCR and in silico study. In vivo vulvovaginitis mice model was used to confirm the activity of the combination in treating vulvovaginal candidiasis. RESULTS Fusidic acid showed efflux inhibiting activity as it increased the accumulation of rhodamine 6G, a substrate for ABC-efflux transporter, and decreased its efflux in C. albicans cells. The antifungal activity of fluconazole was synergized when combined with Fusidic acid. Fusidic acid exerted only minimal cytotoxicity on human erythrocytes indicating its safety. The FA efflux inhibitory activity could be owed to its ability to interfere with efflux protein transporters as revealed by docking studies and downregulation of the efflux-encoding genes of both ABC transporters and MFS superfamily. Moreover, in vivo mice model showed that using fluconazole-fusidic acid combination by vaginal route enhanced fluconazole antifungal activity as shown by lowered fungal burden and a negligible histopathological change in vaginal tissue. CONCLUSION The current findings highlight FA's potential as a potential adjuvant to FLC in the treatment of vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Salwa E Gomaa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Hisham A Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Fatma A Mohamed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Department of Medical Microbiology and Immunology-Medical School, University of Pécs, Szigeti Út 12, Pécs, H-7624, Hungary
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Tarek M Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Alyaa S Abdel Halim
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Mashael A Alghamdi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Basem Mansour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Belqas, 11152, Egypt
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Fehmi Boufahja
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat, 113, Oman.
| | - Fatma Al-Zahraa A Yehia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
2
|
Aderibigbe BA. Nanotherapeutics for the delivery of antifungal drugs. Ther Deliv 2024. [PMID: 38174574 DOI: 10.4155/tde-2023-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
The treatment of fungal infections is challenging with high death rates reported among immunocompromised patients. The currently available antifungals suffer from poor bioavailability and solubility, pharmacokinetics, and drug resistance, with limited cellular uptake. The clinical pipeline of new antifungals is dry. The incorporation of antifungal drugs into polymer-based nanocarriers to form nanotherapeutics is a promising approach to enhance the therapeutic outcomes of the available antifungal drugs. This review summarizes different polymer-based nanotherapeutics strategies that have been explored for the delivery of antifungals, resulting in enhanced therapeutic outcomes, such as improved pharmacokinetics, targeted/sustained delivery, prolonged drug circulation, retention of the drugs at the localized site of action, and overcoming drug resistance when compared with the free antifungal drugs.
Collapse
|
3
|
Shi L, Xu S, Zhu Q, Wei Y. Chitosan-coated miconazole as an effective anti-inflammatory agent for the treatment of postoperative infections in obstetrics and vaginal yeast infection control on in vitro evaluations. Microb Pathog 2023; 184:106312. [PMID: 37652266 DOI: 10.1016/j.micpath.2023.106312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/07/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
People with immune deficiency are at risk of developing infections caused by several bacterial and fungal species. In this work, chitosan-coated miconazole was developed by a simple sol-gel method. Miconazole is considered an effective drug to treat vaginal infection-causing bacteria and fungi. The coating of chitosan with miconazole nitrate showed the highest drug loading efficiency (62.43%) and mean particle size (2 μm). FTIR spectroscopic analysis confirmed the entrapment of miconazole nitrate into chitosan polymer. The antifungal result demonstrated that MN@CS microgel possessed notable anti-Aspergillus fumigatus and Candida albicans activity in lower doses. Antibacterial activity results revealed excellent bacterial growth inhibition of MN@CS microgel towards human skin infectious pathogens Escherichia coli and Staphylococcus aureus. The biocompatibility studies of In vitro cell viability and Artemia salina lethality assay suggested that MN@CS microgel is more biosafe and suitable for human external applications. In the future, it will be an efficient anti-inflammatory agent for the treatment of vaginal infections.
Collapse
Affiliation(s)
- Lixia Shi
- Department of Obstetrics, JiNan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Shan Xu
- Department of Obstetrics, JiNan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Qing Zhu
- Department of Obstetrics, JiNan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China
| | - Yongqing Wei
- Department of Obstetrics, JiNan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China.
| |
Collapse
|
4
|
Siafaka PI, Özcan Bülbül E, Okur ME, Karantas ID, Üstündağ Okur N. The Application of Nanogels as Efficient Drug Delivery Platforms for Dermal/Transdermal Delivery. Gels 2023; 9:753. [PMID: 37754434 PMCID: PMC10529964 DOI: 10.3390/gels9090753] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/03/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
The delivery of active molecules via the skin seems to be an efficient technology, given the various disadvantages of oral drug administration. Skin, which is the largest human organ of the body, has the important role of acting as a barrier for pathogens and other molecules including drugs; in fact, it serves as a primary defense system blocking any particle from entering the body. Therefore, to overcome the skin barriers and poor skin permeability, researchers implement novel carriers which can effectively carry out transdermal delivery of the molecules. Another significant issue which medical society tries to solve is the effective dermal delivery of molecules especially for topical wound delivery. The application of nanogels is only one of the available approaches offering promising results for both dermal and transdermal administration routes. Nanogels are polymer-based networks in nanoscale dimensions which have been explored as potent carriers of poorly soluble drugs, genes and vaccines. The nanogels present unique physicochemical properties, i.e., high surface area, biocompatibility, etc., and, importantly, can improve solubility. In this review, authors aimed to summarize the available applications of nanogels as possible vehicles for dermal and transdermal delivery of active pharmaceutical ingredients and discuss their future in the pharmaceutical manufacturing field.
Collapse
Affiliation(s)
- Panoraia I. Siafaka
- Department of Life Sciences, School of Sciences, Faculty of Pharmacy, European University Cyprus, 2404 Nicosia, Cyprus
| | - Ece Özcan Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, 34010 Istanbul, Turkey;
| | - Mehmet Evren Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, 34116 Istanbul, Turkey;
| | | | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, 34668 Istanbul, Turkey;
| |
Collapse
|
5
|
Formulation Development and In Vitro/In Vivo Characterization of Methotrexate-Loaded Nanoemulsion Gel Formulations for Enhanced Topical Delivery. Gels 2022; 9:gels9010003. [PMID: 36661771 PMCID: PMC9857773 DOI: 10.3390/gels9010003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Methotrexate-loaded oil-in-water nanoemulsion formulations were prepared using the high shear homogenization technique. A drug excipient study (ATR-FTIR) was carried out to investigate the compatibility between the drug, the polymers, and its admixtures. The thermal stability of the nanoemulsion formulations was evaluated by subjecting them to a heating and cooling cycle. The prepared nanoemulsion formulations (FNE1 to FNE6) were evaluated for particle size, PDI value, and entrapment efficiency (EE). They were analyzed for morphological information using transmission electron microscopy. The drug (methotrexate)-loaded nanoemulsion formulations (FNE2, FNE4, and FNE6) were then converted into nanoemulsion gel formulations by adding 1% chitosan (polymer) as a gelling agent. The nanoemulsion gel formulations (FNEG2, FNEG4, and FNEG6) were investigated for physicochemical parameters, viscosity, spreadability, extrudability, drug content, and skin irritation. Various penetration enhancers (olive oil, clove, and almond oil) were employed to examine the potency of the prepared nanoemulsion gel formulations. In vitro drug release, ex vivo permeation, skin drug retention, and stability tests were carried out for evaluation of the prepared nanoemulsion gel formulations (FNEG2, FNEG4, and FNEG6). The data obtained from the in vitro study were subjected to the kinetic model, and the Korsemeyer-Peppas model was best fitted to the data. The nanoemulsion gel formulation FNEG6 showed the maximum controlled drug release and followed an anomalous, non-Fickian release mechanism. The use of almond oil in the preparation of the nanoemulsion gel formulation FNEG6 helped the penetration of the drug across stratum corneum and the restructuring of the properties of skin and resulted in a higher penetration and retention of methotrexate in a deeper layer of the skin. The current study concluded that the methotrexate-loaded nanoemulsion gel formulation FNEG6 showed the best optimum release, permeation, and retention results as compared to the available oral tablets' formulations, followed by a low serum concentration and the maximum drug retention, which is beneficial in treating skin infections and reducing systemic toxicity.
Collapse
|