1
|
Wu Y, Zhang J, Du S, Wang X, Li J, Chen Y, Zhou H, Gao S, Li Y, Liu X. Combination of 308-nm excimer laser and piperine promotes melanocyte proliferation, migration, and melanin content production via the miR-328/SFRP1 axis. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12970. [PMID: 38685665 DOI: 10.1111/phpp.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Both piperine and a 308-nm excimer laser have significant curative effects on vitiligo. This study mainly explored the molecular mechanism of a 308-nm excimer combined with piperine in regulating melanocyte proliferation. METHODS Epidermal melanocytes were cultured in piperine solution, and the cells were irradiated by an XTRAC excimer laser treatment system at 308-nm output monochromatic light. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were for detecting the expression levels of genes or proteins. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and Transwell method was for assessing cell viability and migration capacity. The content of melanin was also detected. RESULTS The combination of the 308-nm excimer laser and piperine enhanced the cell proliferation, migration, and melanin production of melanocytes and upregulated the level of miR-328, and restraint of miR-328 reversed the influence of the 308-nm excimer laser and piperine. Secreted frizzled-related protein 1 (SFRP1) is a direct target gene of miR-328, and miR-328 can inhibit the expression of SFRP1 and elevate the protein level of the Wnt/β-catenin signaling pathway. CONCLUSION The 308-nm excimer laser combined with piperine may be more efficient than piperine alone in the remedy of vitiligo, and the miR-328/SFRP1 and Wnt/β-catenin pathways are participated in the proliferation, migration, and melanin synthesis of melanocytes.
Collapse
Affiliation(s)
- Yifei Wu
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jiayu Zhang
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Sha Du
- Department of Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xiaochuan Wang
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jinrong Li
- Department of Dermatology, Traditional Chinese Medicine Hospital of Jinggu County, Puer, Yunnan, China
| | - Yi Chen
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Hongying Zhou
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Su Gao
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yongrong Li
- Department of Dermatology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xiuhong Liu
- Department of Rheumatology and Clinical Immunology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Alharbi DS, Albalawi SF, Alghrid ST, Alhwity BS, Qushawy M, Mortagi Y, El-Sherbiny M, Prabahar K, Elsherbiny N. Ginger Oil Nanoemulsion Formulation Augments Its Antiproliferative Effect in Ehrlich Solid Tumor Model. Foods 2023; 12:4139. [PMID: 38002196 PMCID: PMC10670723 DOI: 10.3390/foods12224139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a disease that is characterized by uncontrolled cell proliferation. Breast cancer is the most prevalent cancer among women. Ginger oil is a natural cancer fighter and anti-oxidant. However, the minimal absorption of ginger oil from the gastrointestinal tract accounts for its limited medicinal efficacy. The present study was designed to evaluate the efficacy of a nanoemulsion preparation of ginger oil on its oral bioavailability and in vivo anti-cancer efficacy. Ginger oil nanoemulsion was prepared by a high-pressure homogenization technique using different surfactants (Tween 20, 40, and 80). The prepared formulations were evaluated for droplet size, polydispersity index (PDI), zeta potential (ZP), pH, viscosity, and stability by calculating the creaming index percentage. The best formulation was evaluated for shape by TEM. The antitumor activity of the best nano-formulation was determined in comparison with the free oil using the in vivo Ehrlich solid tumor (EST) model. The prepared ginger oil nanoemulsion formulations exhibited acceptable droplet size in the range from 56.67 ± 3.10 nm to 357.17 ± 3.62 nm. A PDI of less than 0.5 indicates the homogeneity of size distribution. The oil globules possessed a negative charge ranging from -12.33 ± 1.01 to -39.33 ± 0.96 mV. The pH and viscosity were in the acceptable range. The TEM image of the best formulation appeared to be spherical with a small size. The ginger oil nanoemulsion reduced in vivo tumor volume and weight, extended animals' life span, and ameliorated liver and kidney function in EST-bearing mice. These effects were superior to using free ginger oil. Collectively, the present study demonstrated that the ginger oil nanoemulsion improved oral absorption with a subsequent enhancement of its anti-proliferative efficacy in vivo, suggesting a nano-formulation of ginger oil for better therapeutic outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Danah S. Alharbi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (D.S.A.); (S.F.A.); (S.T.A.); (B.S.A.)
| | - Shouq F. Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (D.S.A.); (S.F.A.); (S.T.A.); (B.S.A.)
| | - Sarah T. Alghrid
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (D.S.A.); (S.F.A.); (S.T.A.); (B.S.A.)
| | - Basma S. Alhwity
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (D.S.A.); (S.F.A.); (S.T.A.); (B.S.A.)
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish 45511, North Sinai, Egypt;
| | - Yasmin Mortagi
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish 45511, North Sinai, Egypt;
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 13713, Saudi Arabia;
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
3
|
Özkan B, Altuntaş E, Ünlü Ü, Doğan HH, Özsoy Y, Çakır Koç R. Development of an Antiviral Ion-Activated In Situ Gel Containing 18β-Glycyrrhetinic Acid: A Promising Alternative against Respiratory Syncytial Virus. Pharmaceutics 2023; 15:2055. [PMID: 37631269 PMCID: PMC10458153 DOI: 10.3390/pharmaceutics15082055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 08/27/2023] Open
Abstract
The human respiratory syncytial virus (hRSV) is a major cause of serious lower respiratory infections and poses a considerable risk to public health globally. Only a few treatments are currently used to treat RSV infections, and there is no RSV vaccination. Therefore, the need for clinically applicable, affordable, and safe RSV prevention and treatment solutions is urgent. In this study, an ion-activated in situ gelling formulation containing the broad-spectrum antiviral 18β-glycyrrhetinic acid (GA) was developed for its antiviral effect on RSV. In this context, pH, mechanical characteristics, ex vivo mucoadhesive strength, in vitro drug release pattern, sprayability, drug content, and stability were all examined. Rheological characteristics were also tested using in vitro gelation capacity and rheological synergism tests. Finally, the cytotoxic and antiviral activities of the optimized in situ gelling formulation on RSV cultured in the human laryngeal epidermoid carcinoma (HEp-2) cell line were evaluated. In conclusion, the optimized formulation prepared with a combination of 0.5% w/w gellan gum and 0.5% w/w sodium carboxymethylcellulose demonstrated good gelation capacity and sprayability (weight deviation between the first day of the experiment (T0) and the last day of the experiment (T14) was 0.34%), desired rheological synergism (mucoadhesive force (Fb): 9.53 Pa), mechanical characteristics (adhesiveness: 0.300 ± 0.05 mJ), ex vivo bioadhesion force (19.67 ± 1.90 g), drug content uniformity (RSD%: 0.494), and sustained drug release over a period of 6 h (24.56% ± 0.49). The optimized formulation demonstrated strong anti-hRSV activity (simultaneous half maximal effective concentration (EC50) = 0.05 µg/mL; selectivity index (SI) = 306; pre-infection EC50 = 0.154 µg/mL; SI = 100), which was significantly higher than that of ribavirin (EC50 = 4.189 µg/mL; SI = 28) used as a positive control against hRSV, according to the results of the antiviral activity test. In conclusion, this study showed that nasal in situ gelling spray can prevent viral infection and replication by directly inhibiting viral entry or modulating viral replication.
Collapse
Affiliation(s)
- Burcu Özkan
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul 34220, Turkey;
| | - Ebru Altuntaş
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, Istanbul 34116, Turkey;
| | - Ümmühan Ünlü
- Elderly Care Program, Ataturk Health Services Vocational School, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey;
| | - Hasan Hüseyin Doğan
- Department of Biology, Science Faculty, Alaeddin Keykubat Campus, Selcuk University, Konya 42130, Turkey;
| | - Yıldız Özsoy
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Istanbul University, Istanbul 34116, Turkey;
| | - Rabia Çakır Koç
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul 34220, Turkey;
| |
Collapse
|
4
|
Budama-Kilinc Y, Gok B, Kecel-Gunduz S, Altuntas E. Development of nanoformulation for hyperpigmentation disorders: experimental evaluations, in vitro efficacy and in silico molecular docking studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|