1
|
Carnosic Acid and Carnosol Display Antioxidant and Anti-Prion Properties in In Vitro and Cell-Free Models of Prion Diseases. Antioxidants (Basel) 2022; 11:antiox11040726. [PMID: 35453411 PMCID: PMC9027925 DOI: 10.3390/antiox11040726] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/30/2022] Open
Abstract
Prion diseases are transmissible encephalopathies associated with the conversion of the physiological form of the prion protein (PrPC) to the disease-associated (PrPSc). Despite intense research, no therapeutic or prophylactic agent is available. The catechol-type diterpene Carnosic acid (CA) and its metabolite Carnosol (CS) from Rosmarinus officinalis have well-documented anti-oxidative and neuroprotective effects. Since oxidative stress plays an important role in the pathogenesis of prion diseases, we investigated the potential beneficial role of CA and CS in a cellular model of prion diseases (N2a22L cells) and in a cell-free prion amplification assay (RT-QuIC). The antioxidant effects of the compounds were confirmed when N2a22L were incubated with CA or CS. Furthermore, CA and CS reduced the accumulation of the disease-associated form of PrP, detected by Western Blotting, in N2a22L cells. This effect was validated in RT-QuIC assays, indicating that it is not associated with the antioxidant effects of CA and CS. Importantly, cell-free assays revealed that these natural products not only prevent the formation of PrP aggregates but can also disrupt already formed aggregates. Our results indicate that CA and CS have pleiotropic effects against prion diseases and could evolve into useful prophylactic and/or therapeutic agents against prion and other neurodegenerative diseases.
Collapse
|
2
|
Uliassi E, Nikolic L, Bolognesi ML, Legname G. Therapeutic strategies for identifying small molecules against prion diseases. Cell Tissue Res 2022; 392:337-347. [PMID: 34989851 DOI: 10.1007/s00441-021-03573-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023]
Abstract
Prion diseases are fatal neurodegenerative disorders, for which there are no effective therapeutic and diagnostic agents. The main pathological hallmark has been identified as conformational changes of the cellular isoform prion protein (PrPC) to a misfolded isoform of the prion protein (PrPSc). Targeting PrPC and its conversion to PrPSc is still the central dogma in prion drug discovery, particularly in in silico and in vitro screening endeavors, leading to the identification of many small molecules with therapeutic potential. Nonetheless, multiple pathological targets are critically involved in the intricate pathogenesis of prion diseases. In this context, multi-target-directed ligands (MTDLs) emerge as valuable therapeutic approach for their potential to effectively counteract the complex etiopathogenesis by simultaneously modulating multiple targets. In addition, diagnosis occurs late in the disease process, and consequently a successful therapeutic intervention cannot be provided. In this respect, small molecule theranostics, which combine imaging and therapeutic properties, showed tremendous potential to cure and diagnose in vivo prion diseases. Herein, we review the major advances in prion drug discovery, from anti-prion small molecules identified by means of in silico and in vitro screening approaches to two rational strategies, namely MTDLs and theranostics, that have led to the identification of novel compounds with an expanded anti-prion profile.
Collapse
Affiliation(s)
- Elisa Uliassi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, Italy
| | - Lea Nikolic
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, Bologna, Italy.
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
3
|
Pietrucha B, Heropolitanska-Pliszka E, Maciejczyk M, Car H, Sawicka-Powierza J, Motkowski R, Karpinska J, Hryniewicka M, Zalewska A, Pac M, Wolska-Kusnierz B, Bernatowska E, Mikoluc B. Comparison of Selected Parameters of Redox Homeostasis in Patients with Ataxia-Telangiectasia and Nijmegen Breakage Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6745840. [PMID: 29456787 PMCID: PMC5804414 DOI: 10.1155/2017/6745840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/21/2017] [Accepted: 12/03/2017] [Indexed: 11/18/2022]
Abstract
This study compared the antioxidant status and major lipophilic antioxidants in patients with ataxia-telangiectasia (AT) and Nijmegen breakage syndrome (NBS). Total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), and concentrations of coenzyme Q10 (CoQ10) and vitamins A and E were estimated in the plasma of 22 patients with AT, 12 children with NBS, and the healthy controls. In AT patients, TAS (median 261.7 μmol/L) was statistically lower but TOS (496.8 μmol/L) was significantly elevated in comparison with the healthy group (312.7 μmol/L and 311.2 μmol/L, resp.). Tocopherol (0.8 μg/mL) and CoQ10 (0.1 μg/mL) were reduced in AT patients versus control (1.4 μg/mL and 0.3 μg/mL, resp.). NBS patients also displayed statistically lower TAS levels (290.3 μmol/L), while TOS (404.8 μmol/L) was comparable to the controls. We found that in NBS patients retinol concentration (0.1 μg/mL) was highly elevated and CoQ10 (0.1 μg/mL) was significantly lower in comparison with those in the healthy group. Our study confirms disturbances in redox homeostasis in AT and NBS patients and indicates a need for diagnosing oxidative stress in those cases as a potential disease biomarker. Decreased CoQ10 concentration found in NBS and AT indicates a need for possible supplementation.
Collapse
Affiliation(s)
- Barbara Pietrucha
- Clinical Immunology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | | | - Mateusz Maciejczyk
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37 Str., 15-295 Bialystok, Poland
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37 Str., 15-295 Bialystok, Poland
| | | | - Radosław Motkowski
- Department of Pediatrics Rheumatology, Immunology, and Metabolic Bone Diseases, Medical University of Bialystok, Waszyngtona 17 Str., 15-274 Bialystok, Poland
| | - Joanna Karpinska
- Institute of Chemistry, University of Bialystok, Bialystok, Poland
| | | | - Anna Zalewska
- Department of Conservative Dentistry, Medical University of Bialystok, Bialystok, Poland
| | - Malgorzata Pac
- Clinical Immunology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Beata Wolska-Kusnierz
- Clinical Immunology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Ewa Bernatowska
- Clinical Immunology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland
| | - Bozena Mikoluc
- Department of Pediatrics Rheumatology, Immunology, and Metabolic Bone Diseases, Medical University of Bialystok, Waszyngtona 17 Str., 15-274 Bialystok, Poland
| |
Collapse
|
4
|
Abstract
Three decades after the discovery of prions as the cause of Creutzfeldt-Jakob disease and other transmissible spongiform encephalopathies, we are still nowhere close to finding an effective therapy. Numerous pharmacological interventions have attempted to target various stages of disease progression, yet none has significantly ameliorated the course of disease. We still lack a mechanistic understanding of how the prions damage the brain, and this situation results in a dearth of validated pharmacological targets. In this review, we discuss the attempts to interfere with the replication of prions and to enhance their clearance. We also trace some of the possibilities to identify novel targets that may arise with increasing insights into prion biology.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| | - Asvin K K Lakkaraju
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| | - Karl Frontzek
- Institute of Neuropathology, University of Zurich, CH-8091 Zürich, Switzerland;
| |
Collapse
|
5
|
Phytochemistry and Pharmacological Studies of Citrus macroptera: A Medicinal Plant Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9789802. [PMID: 28740540 PMCID: PMC5504973 DOI: 10.1155/2017/9789802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/29/2017] [Indexed: 01/11/2023]
Abstract
Citrus macroptera (family Rutaceae), commonly known as Sat Kara, is a pharmacologically diverse medicinal plant. Various parts of this plant, specifically fruit, have an immense range of medicinal uses in folk medicine directed for a number of ailments. A plethora of active phytochemical constituents of this plant have been revealed so far, namely, limonene, beta-caryophyllene, beta-pinene, geranial edulinine, ribalinine, isoplatydesmine, and so forth. Several studies demonstrated the exploration of pharmacological potential of various parts such as fruits, leaves, and stems of C. macroptera as antioxidant, cytotoxic, antimicrobial, thrombolytic, hypoglycemic, anxiolytic, antidepressant, cardioprotective, and hepatoprotective. Furthermore, inhibition of in vitro α-amylase, inhibition of paracetamol induced hepatotoxicity, and potentiation of brain antioxidant enzyme are also ascertained. In present review, comprehensive study focused on knowledge regarding several phytopharmacological activities of Citrus macroptera has been described.
Collapse
|
6
|
Therapeutic Approaches to Prion Diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:433-453. [DOI: 10.1016/bs.pmbts.2017.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
7
|
Cichon AC, Brown DR. Nrf-2 regulation of prion protein expression is independent of oxidative stress. Mol Cell Neurosci 2014; 63:31-7. [PMID: 25242137 DOI: 10.1016/j.mcn.2014.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/18/2014] [Accepted: 09/12/2014] [Indexed: 12/13/2022] Open
Abstract
Cellular expression of host prion protein (PrP) is essential to infection with prion disease. Understanding the mechanisms that regulate prion protein expression at both the transcriptional and translational levels is therefore an important goal. The cellular prion protein has been associated with resistance to oxidative, and its expression is also increased by oxidative stress. The transcription factor Nrf-2 is associated with cellular responses to oxidative stress and is known to induce upregulation of antioxidant defense mechanisms. We have identified an Nrf-2 binding site in the prion protein promoter (Prnp) and shown that Nrf-2 downregulated PrP expression. However, this effect is independent of oxidative stress as oxidative stress can up-regulate PrP expression regardless of the level of Nrf-2 expression. Furthermore, Nrf-2 has no impact on PrP expression when cells are infected with scrapie. These findings highlight that Nrf-2 can regulate PrP expression, but that this regulation becomes uncoupled during cellular stress.
Collapse
Affiliation(s)
| | - David R Brown
- Department of Biology and Biochemistry, University of Bath, Bath, UK.
| |
Collapse
|
8
|
Multitarget ligands and theranostics: sharpening the medicinal chemistry sword against prion diseases. Future Med Chem 2014; 6:1017-29. [DOI: 10.4155/fmc.14.56] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Prion diseases (PrDs) are fatal neurodegenerative disorders, for which no effective therapeutic and diagnostic tools exist. The main pathogenic event has been identified as the misfolding of a disease-associated prion protein. Nevertheless, pathogenesis seems to involve an intricate array of concomitant processes. Thus, it may be unlikely that drugs acting on single targets can effectively control PrDs. In addition, diagnosis occurs late in the disease process, by which point it is difficult to determine a successful therapeutic intervention. In this context, multitarget ligands (MTLs) and theranostic ligands (TLs) emerge for their potential to effectively cure and diagnose PrDs. In this review, we discuss the medicinal chemistry challenges of identifying novel MTLs and TLs against PrDs, and envision their impact on prion drug discovery.
Collapse
|
9
|
Uppington KM, Brown DR. Modelling neurodegeneration in prion disease - applications for drug development. Expert Opin Drug Discov 2013; 2:777-88. [PMID: 23488996 DOI: 10.1517/17460441.2.6.777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Prion diseases are a group of neurodegenerative diseases that affect mammals, including humans and ruminants such as sheep. They are believed to be caused by the conversion of the prion protein (PrP), a host expressed protein, into a toxic form (PrP(sc)). PrP(sc) accumulates in the brain, resulting in neuronal loss and the typical spongiform appearance of the brain. So far, there are no effective therapies available for prion diseases. This review discusses possible therapies for prion diseases and the models available for advancing research into the disease.
Collapse
Affiliation(s)
- Kay M Uppington
- University of Bath, Department of Biology and Biochemistry, Bath, Claverton Down, BA2 7AY, UK +44 1255 383133 ; +44 1225 386779 ;
| | | |
Collapse
|
10
|
Kamiyama M, Shibamoto T. Flavonoids with potent antioxidant activity found in young green barley leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6260-7. [PMID: 22681491 DOI: 10.1021/jf301700j] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Saponarin, a flavonoid found in young green barley leaves, possesses potent antioxidant activities, which are determined by its inhibition of malonaldehyde (MA) formation from various lipids oxidized by UV light or Fenton's reagent. Lipids used were squalene, ethyl linoleate, ethyl linolenate, ethyl arachidonate, octadecatetraenoic acid (ODTA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), cod liver oil, lecithin I, lecithin II, and blood plasma. The addition of saponarin inhibited the formation of MA from squalene upon UV irradiation at the level of 2 μmol/mL by almost 100%, whereas BHT inhibited its formation by 75% at the same level. Saponarin showed potent antioxidant activity toward fatty acid ethyl esters at levels >100 μg/mL. Saponarin inhibited MA formation in ODTA by 60%, in EPA by 50%, and in DHA by 43% at the level of 15 μmol/mL. Saponarin exhibited strong antioxidant activities with dose-response levels toward cod liver oil and lipoproteins (lecithins I and II), higher than those of α-tocopherol. A mixture of saponarin/lutonarin (4.5:1, w/w) inhibited MA formation appreciably from all lipids tested with dose response. This mixture exhibited highest effect toward cod liver oil (86%), followed by DHA, lecithin II, blood plasma, EPA, and lecithin I. Supplementation of young green barley leaves containing saponarin should be beneficial to health and may prevent diseases caused by oxidative damage such as various cancers, inflammations, and cardiovascular diseases.
Collapse
Affiliation(s)
- Masumi Kamiyama
- Department of Environmental Toxicology, University of California , Davis, California 95616, USA
| | | |
Collapse
|
11
|
Benetti F, Gustincich S, Legname G. Gene expression profiling and therapeutic interventions in neurodegenerative diseases: a comprehensive study on potentiality and limits. Expert Opin Drug Discov 2012; 7:245-59. [PMID: 22468955 DOI: 10.1517/17460441.2012.659661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Neurodegenerative diseases are incurable debilitating disorders of the nervous system that affect approximately 30 million people worldwide. Despite profuse efforts attempting to define the molecular mechanisms underlying neurodegeneration, many aspects of these pathologies remain elusive. The novelty of their mechanisms represents a challenge to biology, to their related biomarkers identification and drug discovery. Because of their multifactorial aspects and complexity, gene expression analysis platforms have been extensively used to investigate altered pathways during degeneration and to identify potential biomarkers and drug targets. AREAS COVERED This work offers an overview of the gene expression profiling studies carried out on Alzheimer's disease, Huntington's disease, Parkinson's disease and prion disease specimens. Therapeutic approaches are also discussed. EXPERT OPINION Although many therapeutic approaches have been tested, some of them acting on several altered cellular pathways, no effective cures for these neurodegenerative diseases have been identified. Microarray technology must be associated with functional proteomics and physiology in an effort to identify specific and selective biomarkers and druggable targets, thus allowing the successful discovery of disease-modifying therapeutic treatments.
Collapse
Affiliation(s)
- Federico Benetti
- Laboratory of Prion Biology, Neurobiology Sector, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | | | | |
Collapse
|
12
|
Fuhua P, Xuhui D, Zhiyang Z, Ying J, Yu Y, Feng T, Jia L, Lijia G, Xueqiang H. Antioxidant status of bilirubin and uric acid in patients with myasthenia gravis. Neuroimmunomodulation 2012; 19:43-9. [PMID: 22067621 DOI: 10.1159/000327727] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 03/16/2011] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress and changes in antioxidant status have been implicated in the pathogenesis of inflammatory and autoimmune diseases, and free radicals can cause considerable damage to the acetylcholine receptors. 388 individuals, including 97 patients with myasthenia gravis (MG), 135 patients with multiple sclerosis (MS) and 156 healthy controls, were assessed for serum levels of bilirubin and uric acid (UA), in order to determine the levels of these natural antioxidants in the serum. We found that serum UA levels in patients with MG were significantly lower (266.03 ± 93.09 μmol/l) compared with those of the healthy control group (338.87 ± 107.10 μmol/l, p = 0.001). However, there was no significant difference of serum UA levels between patients with MG and those with MS (p = 0.071). We also found that serum levels of total, direct and indirect bilirubin in patients with MG were significantly lower, compared with those in the healthy control group, whether male or female. From this study, we conclude that serum levels of bilirubin and UA are lower in MG patients.
Collapse
Affiliation(s)
- Peng Fuhua
- Department of Neurology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China. pfh93 @ 21cn.com
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Peng F, Yang Y, Liu J, Jiang Y, Zhu C, Deng X, Hu X, Chen X, Zhong X. Low antioxidant status of serum uric acid, bilirubin and albumin in patients with neuromyelitis optica. Eur J Neurol 2011; 19:277-83. [DOI: 10.1111/j.1468-1331.2011.03488.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Bongarzone S, Tran HNA, Cavalli A, Roberti M, Rosini M, Carloni P, Legname G, Bolognesi ML. Hybrid Lipoic Acid Derivatives to Attack Prion Disease on Multiple Fronts. ChemMedChem 2011; 6:601-5. [DOI: 10.1002/cmdc.201100072] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Indexed: 11/12/2022]
|
15
|
Appleby BS, Lyketsos CG. Rapidly progressive dementias and the treatment of human prion diseases. Expert Opin Pharmacother 2010; 12:1-12. [PMID: 21091283 DOI: 10.1517/14656566.2010.514903] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD Rapidly progressive dementia (RPD) has many possible etiologies and definitive treatment is reliant upon an accurate diagnosis from an appropriate diagnostic work-up. A large portion of the neurodegenerative causes of RPD are due to prion diseases (e.g., Creutzfeldt-Jakob disease). The study of prion diseases, for which there is no currently available treatment, has public health implications and is becoming increasingly more relevant to our understanding of other protein misfolding disorders including Alzheimer's disease, frontotemporal degeneration, and Parkinson's disease. AREAS COVERED IN THIS REVIEW This article begins with an overview of the etiologies and diagnostic work-up of RPD followed by a detailed review of the literature concerning the treatment of human prion diseases (1971 to present). WHAT THE READER WILL GAIN The reader will understand the differential diagnosis and work-up of RPD as it pertains to its treatment, as well as an in-depth understanding of treatments of human prion diseases. TAKE HOME MESSAGE An accurate diagnosis of the cause of RPD is of paramount importance when determining appropriate treatment. Most studies of the treatment for human prion diseases are case reports or case series, and results from only one randomized, placebo-controlled study have been reported in the literature (flupirtine). Studies have been hindered by disease heterogeneity and lack of standardized outcome measures. Although no effective prion disease treatment has been revealed through these studies, they provide important considerations for future studies.
Collapse
Affiliation(s)
- Brian S Appleby
- Johns Hopkins University School of Medicine, Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Meyer 279, 600 N. Wolfe St., Baltimore, MD 21287, USA.
| | | |
Collapse
|
16
|
Benetti F, Gasperini L, Zampieri M, Legname G. Gene expression profiling to identify druggable targets in prion diseases. Expert Opin Drug Discov 2010; 5:177-202. [PMID: 22822917 DOI: 10.1517/17460440903544449] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
IMPORTANCE OF THE FIELD Despite many recent advances in prion research, the molecular mechanisms by which prions cause neurodegeneration have not been established. In fact, the complexity and the novelty characterizing this class of disorders pose a huge challenge to drug discovery. Pharmacogenomics has recently adopted high-throughput transcriptome analyses to predict potential drug target candidates, with promising results in various fields of medicine. AREAS COVERED IN THIS REVIEW The present work offers an overview of the transcriptional alterations induced by prion infection in different biological systems. Hereafter, therapeutic approaches are discussed in light of the identified altered processes. WHAT THE READER WILL GAIN This review offers readers a detailed overview on microarray analyses, taking into account their advantages and limitations. Our work can help readers, from many research areas, to design a suitable microarray experiment. TAKE HOME MESSAGE So far, drugs acting on the pathways identified by microarray analysis have not been found to be effective in prion diseases therapy. An integration of gene expression profiling, proteomics and physiology should be applied to pursue this aim.
Collapse
Affiliation(s)
- Federico Benetti
- Laboratory of Prion Biology, Neurobiology Sector, Scuola Internazionale Superiore di Studi Avanzati-International School of Advanced Studies (SISSA-ISAS), Edificio Q1, Basovizza, Trieste, Italy
| | | | | | | |
Collapse
|
17
|
Brambilla D, Mancuso C, Scuderi MR, Bosco P, Cantarella G, Lempereur L, Di Benedetto G, Pezzino S, Bernardini R. The role of antioxidant supplement in immune system, neoplastic, and neurodegenerative disorders: a point of view for an assessment of the risk/benefit profile. Nutr J 2008; 7:29. [PMID: 18826565 PMCID: PMC2572622 DOI: 10.1186/1475-2891-7-29] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 09/30/2008] [Indexed: 12/20/2022] Open
Abstract
This review will discuss some issues related to the risk/benefit profile of the use of dietary antioxidants. Thus, recent progress regarding the potential benefit of dietary antioxidants in the treatment of chronic diseases with a special focus on immune system and neurodegenerative disorders will be discussed here. It is well established that reactive oxygen species (ROS) play an important role in the etiology of numerous diseases, such as atherosclerosis, diabetes and cancer. Among the physiological defense system of the cell, the relevance of antioxidant molecules, such as glutathione and vitamins is quite well established. Recently, the interest of researchers has, for example, been conveyed on antioxidant enzyme systems, such as the heme oxygenase/biliverdin reductase system, which appears modulated by dietary antioxidant molecules, including polyphenols and beta-carotene. These systems possibly counteract oxidative damage very efficiently and finally modulate the activity of oxidative phenomena occurring, for instance, during pathophysiological processes. Although evidence shows that antioxidant treatment results in cytoprotection, the potential clinical benefit deriving from both nutritional and supplemental antioxidants is still under wide debate. In this line, the inappropriate assumption of some lipophylic vitamins has been associated with increased incidence of cancer rather than with beneficial effects.
Collapse
Affiliation(s)
- Daria Brambilla
- Department of Experimental and Clinical Pharmacology, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Webb S, Lekishvili T, Loeschner C, Sellarajah S, Prelli F, Wisniewski T, Gilbert IH, Brown DR. Mechanistic insights into the cure of prion disease by novel antiprion compounds. J Virol 2007; 81:10729-41. [PMID: 17652397 PMCID: PMC2045489 DOI: 10.1128/jvi.01075-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 07/11/2007] [Indexed: 11/20/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders. Identification of possible therapeutic tools is important in the search for a potential treatment for these diseases. Congo red is an azo dye that has been used for many years to detect abnormal prion protein in the brains of diseased patients or animals. Congo red has little therapeutic potential for the treatment of these diseases due to toxicity and poor permeation of the blood-brain barrier. We have prepared two Congo red derivatives, designed without these liabilities, with potent activity in cellular models of prion disease. One of these compounds cured cells of the transmissible agent. The mechanism of action of these compounds is possibly multifactorial. The high affinity of Congo red derivatives, including compounds that are ineffective and are effective at the cure of prion disease, for abnormally folded prion protein suggests that the amyloidophylic property of these derivatives is not as critical to the mechanism of action as other effects. Congo red derivatives that are effective at the cure of prion disease increased the degradation of abnormal PrP by the proteasome. Therefore, the principal mechanism of action of the Congo red analogues was to prevent inhibition of proteasomal activity by PrPSc.
Collapse
Affiliation(s)
- Sarah Webb
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Thanks to the continuing bio-medicinal efforts, similar causes underlying the pathogenesis of Alzheimer's disease (AD) and prion diseases (PDs) have been revealed, which include oxidative stress, excessive transition metal ions, and misfolded/aggregated proteins. Therefore, the therapeutic strategy for one disease may be effective for the other. More interestingly, accumulating evidence indicates that not just the strategies but also the prescriptions may be shared by AD and PD treatments. In this review, we first summarize the known dual fighters against AD and PDs (which include antioxidants, metal chelators, and protein aggregation inhibitors), and then indicate that some super-dual-fighters may hit multiple targets implicated in AD and PDs, whose structural features highlight the importance of aromatic moiety and phenolic groups. These findings not only provide important clues to accelerating the screening of anti-AD and anti-PDs drugs but also help to understand the etiology of AD and PDs.
Collapse
Affiliation(s)
- Hong-Yu Zhang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Center for Advanced Study, Shandong University of Technology, Zibo 255049, PR China.
| |
Collapse
|