1
|
Shi CC, Zhu HY, Li H, Zeng DL, Shi XL, Zhang YY, Lu Y, Ling LJ, Wang CY, Chen DF. Regulating the balance of Th17/Treg cells in gut-lung axis contributed to the therapeutic effect of Houttuynia cordata polysaccharides on H1N1-induced acute lung injury. Int J Biol Macromol 2020; 158:52-66. [PMID: 32353505 DOI: 10.1016/j.ijbiomac.2020.04.211] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Our previous study had demonstrated that oral administration of Houttuynia cordata polysaccharides (HCP) without in vitro antiviral activity ameliorated gut and lung injuries induced by influenza A virus (IAV) in mice. However, as macromolecules, HCP was hard to be absorbed in gastrointestinal tract and had no effect on lung injury when administrated intravenously. The action mechanism of HCP was thus proposed as regulating the gut mucosal-associated lymphoid tissue (GALT). Actually, HCP treatment restored the balance of Th17/Treg cells firstly in GALT and finally in the lung. HCP reduced the expression of chemokine CCL20 in the lung and regulated the balance of Th17/Treg carrying CCR6+ (the CCL20 receptor), which was associated with specific migration of Th17/Treg cells from GALT to lung. In vitro, HCP inhibited Th17 cell differentiation through the downregulation of phospho-STAT3, whereas it promoted Treg cell differentiation by upregulating phospho-STAT5. Furthermore, its therapeutic effect was abolished in RORγt-/- or Foxp3-/- mice. These findings indicated that oral administration of macromolecular polysaccharides like HCP might ameliorate lung injury in IAV infected mice via directly regulating the balance of Th17/Treg cells in gut-lung axis. Our results provided a potential mechanism underlying the therapeutic effect of polysaccharides on pulmonary infection.
Collapse
Affiliation(s)
- Chen-Chen Shi
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Hai-Yan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University.
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Dong-Lin Zeng
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Xun-Long Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University
| | - Yun-Yi Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Li-Jun Ling
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Chang-Yue Wang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Dao-Feng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Renoprotective effect and mechanism of polysaccharide from Polyporus umbellatus sclerotia on renal fibrosis. Carbohydr Polym 2019; 212:1-10. [PMID: 30832835 DOI: 10.1016/j.carbpol.2019.02.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/25/2019] [Accepted: 02/08/2019] [Indexed: 01/02/2023]
Abstract
As a fungal polysaccharide, polysaccharide (PPUS) from Polyporus umbellatus sclerotia have showed remarkable anti-inflammatory activities. In view of the closely relationship between inflammation and renal fibrosis, and considering the significant role of other fungal polysaccharides on treatment of renal fibrosis, we speculated that PPUS may have therapeutic effects on renal fibrosis. However, there was not any reports about PPUS treatment this disease. The purpose of this paper is to investigate renoprotective effect and mechanism of PPUS on renal fibrosis. The results indicated that PPUS can improve renal function and ameliorate the degree of renal collagen deposition and further fibrosis. Its mechanism was found to be related with decreased inflammation, suppressive epithelial-mesenchymal transition, reconstructed the balance of matrix metalloproteinases and tissue inhibitor of metalloproteinases, and pro-fibrotic and anti-fibrotic factors. The data implied that PPUS can serve as a clinical candidate on treatment of renal interstitial fibrosis.
Collapse
|
3
|
Therapeutic effect and mechanism of polysaccharide from Alpiniae oxyphyllae fructus on urinary incontinence. Int J Biol Macromol 2019; 128:804-813. [PMID: 30708017 DOI: 10.1016/j.ijbiomac.2019.01.193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/15/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
The purpose of this paper was to investigate the effects and mechanism of polysaccharide (PAOF) from Alpiniae oxyphyllae fructus on urinary incontinence (UI) in old-age hydruric model rats (OHMR). Results suggested that PAOF can significantly reduce the urination volume, Na+, Cl- emission and increase K+ excretion of OHMR. In addition, PAOF can increase the content of aldosterone (ALD) and antidiuretic hormone (ADH) in blood of OHMR. The coefficients of spleen, thymus and adrenal of OHMR were improved by PAOF. Furthermore, PAOF can not only elevate significantly the expression of β3-adrenoceptor mRNA in bladder detrusor of OHMR, but also increase the content of adenylate cyclase (AC), cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) in bladder detrusor of OHMR. Meanwhile, PAOF can elevate significantly the expression of PKA protein in bladder detrusor of rats with polyuria. The data implied that PAOF may offer therapeutic potential against UI.
Collapse
|
4
|
Gao H, Zhang X, Chen C, Li K, Ding D. Unity Makes Strength: How Aggregation-Induced Emission Luminogens Advance the Biomedical Field. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800074] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Heqi Gao
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Xiaoyan Zhang
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Chao Chen
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education; College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Kai Li
- Institute of Materials Research & Engineering; A*STAR; Singapore 138634 Singapore
- Department of Biomedical Engineering; Southern University of Science and Technology; Shenzhen Guangdong 510855 China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education; College of Life Sciences; Nankai University; Tianjin 300071 China
| |
Collapse
|