1
|
Guo S, Du J, Li D, Xiong J, Chen Y. Versatile xylose and arabinose genetic switches development for yeasts. Metab Eng 2025; 87:21-36. [PMID: 39537022 DOI: 10.1016/j.ymben.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Inducible transcription systems are essential tools in genetic engineering, where tight control, strong inducibility and fast response with cost-effective inducers are highly desired. However, existing systems in yeasts are rarely used in large-scale fermentations due to either cost-prohibitive inducers or incompatible performance. Here, we developed powerful xylose and arabinose induction systems in Saccharomyces cerevisiae, utilizing eukaryotic activators XlnR and AraRA from Aspergillus species and bacterial repressors XylR and AraRR. By integrating these signals into a highly-structured synthetic promoter, we created dual-mode systems with strong outputs and minimal leakiness. These systems demonstrated over 4000- and 300-fold regulation with strong activation and rapid response. The dual-mode xylose system was fully activated by xylose-rich agricultural residues like corncob hydrolysate, outperforming existing systems in terms of leakiness, inducibility, dynamic range, induction rate, and growth impact on host. We validated their utility in metabolic engineering with high-titer linalool production and demonstrated the transferability of the XlnR-based xylose induction system to Pichia pastoris, Candida glabrata and Candida albicans. This work provides robust genetic switches for yeasts and a general strategy for integrating activation-repression signals into synthetic promoters to achieve optimal performance.
Collapse
Affiliation(s)
- Shuhui Guo
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Juhua Du
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Donghan Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Jinghui Xiong
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ye Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Lee TE, Shin KC, Oh DK. Efficient conversion of xylan to l-arabinose by multi-enzymatic cascade reaction including d-xylulose 4-epimerase as a new stereoselectivity-exchange enzyme. BIORESOURCE TECHNOLOGY 2024; 413:131502. [PMID: 39299351 DOI: 10.1016/j.biortech.2024.131502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
l-Arabinose has been produced by hydrolyzing arabinan, a component of hemicellulose. However, l-arabinose has limitations in industrial applications owing to its relatively high cost. Here, d-xylulose 4-epimerase as a new-type enzyme was developed from d-tagaturonate 3-epimerase from Thermotoga petrophila using structure-guided enzyme engineering. d-Xylulose 4-epimerase, which epimerized d-xylulose to l-ribulose, d-xylulokinase and sugar phosphatase, which overcame the equilibrium of d-xylose isomerase, were included to establish a new efficient conversion pathway from d-xylose to l-arabinose. l-Arabinose at 34 g/L was produced from 100 g/L xylan in 45 h by multi-enzymatic cascade reaction using xylanase and enzymes involved in the established conversion pathway. As l-ribulokinase was used instead of d-xylulokinase in the established conversion pathway, an efficient reverse-directed conversion pathway from l-arabinose to d-xylose and the production of d-xylose from arabinan using arabinanase and enzymes involved in the proposed pathway are proposed.
Collapse
Affiliation(s)
- Tae-Eui Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, 81 Oedae-Ro, Mohyein-Eup, Cheoin-Gu, Yongin 17035, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
3
|
Seevanathan Y, Zawawi N, Salleh AB, Oslan SN, Ashaari NS, Amir Hamzah AS, Sabri S. Trehalulose: Exploring its benefits, biosynthesis, and enhanced production techniques. Carbohydr Res 2024; 545:109293. [PMID: 39437465 DOI: 10.1016/j.carres.2024.109293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
The increasing concern over sugar-related health issues has sparked research interest in seeking alternatives to sucrose. Trehalulose, a beneficial structural isomer of sucrose, is a non-cariogenic sugar with a low glycemic and insulinemic index. Besides its potential as a sugar substitute, trehalulose exhibits high antioxidant properties, making it attractive for various industrial applications. Despite its numerous advantages and potential application in various sectors, the industrial adoption of trehalulose has yet to be established due to lack of studies on its characteristics and practical uses. This review aims to provide a comprehensive overview of the properties of trehalulose, emphasizing its health benefits. The industrial prospects of trehalulose as sweetener and reducing agent, particularly in food and beverages pharmaceutical, and cosmeceutical sectors, are explored. Additionally, the review delves into the sources of trehalulose and the diverse organisms capable of producing trehalulose. The biosynthesis of this sugar primarily involves an enzyme-mediated process. Thus, these enzymes' properties, mechanisms, and the heterologous expression of genes associated with trehalulose production are explored. The strategies discussed in this review can be improved and applied to establish trehalulose bio-factories for efficient synthesis of trehalulose in the future. With further research and development, trehalulose holds promise as a valuable component across various industries.
Collapse
Affiliation(s)
- Yogaletchumy Seevanathan
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Norhasnida Zawawi
- Laboratory of Halal Services, Halal Products Research Institute, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nur Suhanawati Ashaari
- Malaysian Genome and Vaccine Institute (MGVI), National Institute of Biotechnology Malaysia (NIBM), 43000, Kajang, Selangor, Malaysia
| | - Amir Syahir Amir Hamzah
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Center, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Kumar V, Agrawal D, Bommareddy RR, Islam MA, Jacob S, Balan V, Singh V, Thakur VK, Navani NK, Scrutton NS. Arabinose as an overlooked sugar for microbial bioproduction of chemical building blocks. Crit Rev Biotechnol 2024; 44:1103-1120. [PMID: 37932016 DOI: 10.1080/07388551.2023.2270702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/06/2023] [Accepted: 09/19/2023] [Indexed: 11/08/2023]
Abstract
The circular economy is anticipated to bring a disruptive transformation in manufacturing technologies. Robust and industrial scalable microbial strains that can simultaneously assimilate and valorize multiple carbon substrates are highly desirable, as waste bioresources contain substantial amounts of renewable and fermentable carbon, which is diverse. Lignocellulosic biomass (LCB) is identified as an inexhaustible and alternative resource to reduce global dependence on oil. Glucose, xylose, and arabinose are the major monomeric sugars in LCB. However, primary research has focused on the use of glucose. On the other hand, the valorization of pentose sugars, xylose, and arabinose, has been mainly overlooked, despite possible assimilation by vast microbial communities. The present review highlights the research efforts that have explicitly proven the suitability of arabinose as the starting feedstock for producing various chemical building blocks via biological routes. It begins by analyzing the availability of various arabinose-rich biorenewable sources that can serve as potential feedstocks for biorefineries. The subsequent section outlines the current understanding of arabinose metabolism, biochemical routes prevalent in prokaryotic and eukaryotic systems, and possible products that can be derived from this sugar. Further, currently, exemplar products from arabinose, including arabitol, 2,3-butanediol, 1,2,3-butanetriol, ethanol, lactic acid, and xylitol are discussed, which have been produced by native and non-native microbial strains using metabolic engineering and genome editing tools. The final section deals with the challenges and obstacles associated with arabinose-based production, followed by concluding remarks and prospects.
Collapse
Affiliation(s)
- Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, India
| | - Rajesh Reddy Bommareddy
- Department of Applied Sciences, Health and Life Sciences, Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle upon Tyne, UK
| | - M Ahsanul Islam
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, India
| | - Venkatesh Balan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, USA
| | - Vijai Singh
- Department of Biosciences, School of Sciences, Indrashil University, Rajpur, Mehsana, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Long L, Lin Q, Wang J, Ding S. Microbial α-L-arabinofuranosidases: diversity, properties, and biotechnological applications. World J Microbiol Biotechnol 2024; 40:84. [PMID: 38294733 DOI: 10.1007/s11274-023-03882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024]
Abstract
Arabinoxylans (AXs) are hemicellulosic polysaccharides consisting of a linear backbone of β-1,4-linked xylose residues branched by high content of α-L-arabinofuranosyl (Araf) residues along with other side-chain substituents, and are abundantly found in various agricultural crops especially cereals. The efficient bioconversion of AXs into monosaccharides, oligosaccharides and/or other chemicals depends on the synergism of main-chain enzymes and de-branching enzymes. Exo-α-L-arabinofuranosidases (ABFs) catalyze the hydrolysis of terminal non-reducing α-1,2-, α-1,3- or α-1,5- linked α-L-Araf residues from arabinose-substituted polysaccharides or oligosaccharides. ABFs are critically de-branching enzymes in bioconversion of agricultural biomass, and have received special attention due to their application potentials in biotechnological industries. In recent years, the researches on microbial ABFs have developed quickly in the aspects of the gene mining, properties of novel members, catalytic mechanisms, methodologies, and application technologies. In this review, we systematically summarize the latest advances in microbial ABFs, and discuss the future perspectives of the enzyme research.
Collapse
Affiliation(s)
- Liangkun Long
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| | - Qunying Lin
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, China CO-OP, Nanjing, 211111, People's Republic of China
| | - Jing Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shaojun Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| |
Collapse
|
6
|
Kang L, Pang J, Zhang X, Liu Y, Wu Y, Wang J, Han D. L-arabinose Attenuates LPS-Induced Intestinal Inflammation and Injury through Reduced M1 Macrophage Polarization. J Nutr 2023; 153:3327-3340. [PMID: 37717628 DOI: 10.1016/j.tjnut.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND L-arabinose has anti-inflammatory and metabolism-promoting properties, and macrophages participate in the alleviation of inflammation; however, the mechanism by which they contribute to the anti-inflammatory effects of L-arabinose is unknown. OBJECTIVES To investigate the involvement of macrophages in the mitigation of L-arabinose in an intestinal inflammation model induced by lipopolysaccharide (LPS). METHODS Five-week-old male C57BL/6 mice were divided into 3 groups: a control and an LPS group that both received normal water supplementation, and an L-arabinose (ARA+LPS) group that received 5% L-arabinose supplementation. Mice in the LPS and ARA+LPS groups were intraperitoneally injected with LPS (10 mg/kg body weight), whereas the control group was intraperitoneally injected with the same volume of saline. Intestinal morphology, cytokines, tight junction proteins, macrophage phenotypes, and microbial communities were profiled at 6 h postinjection. RESULTS L-arabinose alleviated LPS-induced damage to intestinal morphology. L-arabinose down-regulated serum tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6, and messenger RNA (mRNA) levels of TNF-α, IL-1β, interferon-γ (IFN-γ), and toll-like receptor-4 in jejunum and colon compared with those of the LPS group (P < 0.05). The mRNA and protein levels of occludin and claudin-1 were significantly increased by L-arabinose (P < 0.05). Interferon regulatory factor-5 (IRF-5) and signal transducer and activator of transcription-1 (STAT-1), key genes characterized by M1 macrophages, were elevated in the jejunum and colon of LPS mice (P < 0.05) but decreased in the ARA+LPS mice (P < 0.05). In vitro, L-arabinose decreased the proportion of M1 macrophages and inhibited mRNA levels of TNF-α, IL-1β, IL-6, IFN-γ, as well as IRF-5 and STAT-1 (P < 0.01). Moreover, L-arabinose restored the abundance of norank_f__Muribaculaceae, Faecalibaculum, Dubosiella, Prevotellaceae_UCG-001, and Paraasutterella compared with those of LPS (P < 0.05) and increased the concentration of short-chain fatty acids (P < 0.05). CONCLUSION The anti-inflammatory effects of L-arabinose are achieved by reducing M1 macrophage polarization, suggesting that L-arabinose could be a candidate functional food or nutritional strategy for intestinal inflammation and injury.
Collapse
Affiliation(s)
- Luyuan Kang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiaman Pang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yisi Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
7
|
Chen X, Dai Y, Huang Z, Zhao L, Du J, Li W, Yu D. Effect of ultrasound on the glycosylation reaction of pea protein isolate-arabinose: Structure and emulsifying properties. ULTRASONICS SONOCHEMISTRY 2022; 89:106157. [PMID: 36088895 PMCID: PMC9474918 DOI: 10.1016/j.ultsonch.2022.106157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 05/26/2023]
Abstract
This study investigated the effects of different ultrasonic power and ultrasonic time on the structure and emulsifying properties of pea protein isolate (PPI)-arabinose conjugates. An examination of the absorbance and color development of PPI-d-arabinose (Ara) conjugates found that compared with traditional heating, the degree of glycosylation of protein reached the maximum when the ultrasonic treatment power was 150 and the treatment time was 30 min. Structural analysis revealed that the content of disordered structures (β-turn and random coil) of the protein conjugates increased, the maximum emission wavelength of the fluorescence spectrum was red-shifted, and the UV second-order derivative values decreased. The protein structure unfolded, exposing more hydrophobic groups on the molecular surface. Ultrasonic treatment improved the emulsification of protein conjugates. The emulsifying activity index (EAI) increased to 19.7 and 19.3 m2/g, and the emulsifying stability index (ESI) also increased. The contact angle and zeta potential also demonstrate that ultrasonic power has a positive effect on emulsion stability. Based on examining the thermal stability of the emulsion, the ultrasonic treatment increased the thermal denaturation resistance of the protein. This result confirms that mild sonication can increase the degree of glycosylation reaction and improve the emulsification properties of protein-Ara conjugates, providing a theoretical basis for developing foods with excellent emulsification properties.
Collapse
Affiliation(s)
- Xing Chen
- Northeast Agricultural University, Harbin, 150030, China
| | - Yajie Dai
- Northeast Agricultural University, Harbin, 150030, China
| | - Zhe Huang
- Northeast Agricultural University, Harbin, 150030, China
| | - Linwei Zhao
- Northeast Agricultural University, Harbin, 150030, China
| | - Jing Du
- Northeast Agricultural University, Harbin, 150030, China
| | - Wei Li
- Northeast Agricultural University, Harbin, 150030, China
| | - Dianyu Yu
- Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
8
|
Wang Y, Zhao J, Li Q, Liu J, Sun Y, Zhang K, Fan M, Qian H, Li Y, Wang L. L-Arabinose improves hypercholesterolemia via regulating bile acid metabolism in high-fat-high-sucrose diet-fed mice. Nutr Metab (Lond) 2022; 19:30. [PMID: 35428331 PMCID: PMC9013033 DOI: 10.1186/s12986-022-00662-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hypercholesterolemia is closely associated with an increased risk of cardiovascular diseases. l-Arabinose exhibited hypocholesterolemia properties, but underlying mechanisms have not been sufficiently investigated. This study aimed to elucidate the mechanisms of l-arabinose on hypocholesterolemia involving the enterohepatic circulation of bile acids. Methods Thirty six-week-old male mice were randomly divided into three groups: the control group and the high-fat-high-sucrose diet (HFHSD)-fed group were gavaged with distilled water, and the l-arabinose-treated group were fed HFHSD and received 400 mg/kg/day l-arabinose for 12 weeks. Serum and liver biochemical parameters, serum and fecal bile acid, cholesterol and bile acid metabolism-related gene and protein expressions in the liver and small intestine were analyzed. Results l-Arabinose supplementation significantly reduced body weight gain, lowered circulating low-density lipoprotein cholesterol (LDL-C) while increasing high-density lipoprotein cholesterol (HDL-C) levels, and efficiently alleviated hepatic inflammation and lipid accumulations in HFHSD-fed mice. l-Arabinose inhibited cholesterol synthesis via downregulation of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Additionally, l-arabinose might facilitate reverse cholesterol transport, evidenced by the increased mRNA expressions of low-density lipoprotein receptor (LDL-R) and scavenger receptor class B type 1 (SR-B1). Furthermore, l-arabinose modulated ileal reabsorption of bile acids mainly through downregulation of ileal bile acid-binding protein (I-BABP) and apical sodium-dependent bile acid transporter (ASBT), resulting in the promotion of hepatic synthesis of bile acids via upregulation of cholesterol-7α-hydroxylase (CYP7A1). Conclusions l-Arabinose supplementation exhibits hypocholesterolemic effects in HFHSD-fed mice primarily due to regulation of bile acid metabolism-related pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-022-00662-8.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jiajia Zhao
- College of Cooking Science and Technology, Jiangsu College of Tourism, Yangzhou, 225000, China
| | - Qiang Li
- China National Institute of Standardization, No. 4 Zhichun Road, Haidian District, Beijing, China
| | - Jinxin Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
9
|
Ahmed A, Khan TA, Dan Ramdath D, Kendall CWC, Sievenpiper JL. Rare sugars and their health effects in humans: a systematic review and narrative synthesis of the evidence from human trials. Nutr Rev 2022; 80:255-270. [PMID: 34339507 PMCID: PMC8754252 DOI: 10.1093/nutrit/nuab012] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/22/2021] [Accepted: 02/25/2021] [Indexed: 11/14/2022] Open
Abstract
CONTEXT Rare sugars are monosaccharides and disaccharides (found in small quantities in nature) that have slight differences in their chemical structure compared with traditional sugars. Little is known about their unique physiological and cardiometabolic effects in humans. OBJECTIVE The objective of this study was to conduct a systematic review and synthesis of controlled intervention studies of rare sugars in humans, using PRISMA guidelines. DATA SOURCES MEDLINE and EMBASE were searched through October 1, 2020. Studies included both post-prandial (acute) and longer-term (≥1 week duration) human feeding studies that examined the effect of rare sugars (including allulose, arabinose, tagatose, trehalose, and isomaltulose) on cardiometabolic and physiological risk factors. DATA EXTRACTION In all, 50 studies in humans focusing on the 5 selected rare sugars were found. A narrative synthesis of the selected literature was conducted, without formal quality assessment or quantitative synthesis. DATA SYNTHESIS The narrative summary included the food source of each rare sugar, its effect in humans, and the possible mechanism of effect. Overall, these rare sugars were found to offer both short- and long-term benefits for glycemic control and weight loss, with effects differing between healthy individuals, overweight/obese individuals, and those with type 2 diabetes. Most studies were of small size and there was a lack of large randomized controlled trials that could confirm the beneficial effects of these rare sugars. CONCLUSION Rare sugars could offer an opportunity for commercialization as an alternative sweetener, especially for those who are at high cardiometabolic risk. SYSTEMATIC REVIEW REGISTRATION OSF registration no. 10.17605/OSF.IO/FW43D.
Collapse
Affiliation(s)
- Amna Ahmed
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
| | - Tauseef A Khan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
| | - D Dan Ramdath
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, Canada
| | - Cyril W C Kendall
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - John L Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, ON, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine St. Michael's Hospital, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
10
|
Abstract
Glucose isomerase (GI, also known as xylose isomerase) reversibly isomerizes D-glucose and D-xylose to D-fructose and D-xylulose, respectively. GI plays an important role in sugar metabolism, fulfilling nutritional requirements in bacteria. In addition, GI is an important industrial enzyme for the production of high-fructose corn syrup and bioethanol. This review introduces the functions, structure, and applications of GI, in addition to presenting updated information on the characteristics of newly discovered GIs and structural information regarding the metal-binding active site of GI and its interaction with the inhibitor xylitol. This review provides an overview of recent advancements in the characterization and engineering of GI, as well as its industrial applications, and will help to guide future research in this field.
Collapse
|
11
|
Optimisation of xylanases production by two Cellulomonas strains and their use for biomass deconstruction. Appl Microbiol Biotechnol 2021; 105:4577-4588. [PMID: 34019113 PMCID: PMC8195749 DOI: 10.1007/s00253-021-11305-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/19/2021] [Accepted: 04/18/2021] [Indexed: 11/12/2022]
Abstract
Abstract One of the main distinguishing features of bacteria belonging to the Cellulomonas genus is their ability to secrete multiple polysaccharide degrading enzymes. However, their application in biomass deconstruction still constitutes a challenge. We addressed the optimisation of the xylanolytic activities in extracellular enzymatic extracts of Cellulomonas sp. B6 and Cellulomonas fimi B-402 for their subsequent application in lignocellulosic biomass hydrolysis by culture in several substrates. As demonstrated by secretomic profiling, wheat bran and waste paper resulted to be suitable inducers for the secretion of xylanases of Cellulomonas sp. B6 and C. fimi B-402, respectively. Both strains showed high xylanolytic activity in culture supernatant although Cellulomonas sp. B6 was the most efficient xylanolytic strain. Upscaling from flasks to fermentation in a bench scale bioreactor resulted in equivalent production of extracellular xylanolytic enzymatic extracts and freeze drying was a successful method for concentration and conservation of the extracellular enzymes, retaining 80% activity. Moreover, enzymatic cocktails composed of combined extra and intracellular extracts effectively hydrolysed the hemicellulose fraction of extruded barley straw into xylose and xylooligosaccharides. Key points • Secreted xylanase activity of Cellulomonas sp. B6 and C. fimi was maximised. • Biomass-induced extracellular enzymes were identified by proteomic profiling. • Combinations of extra and intracellular extracts were used for barley straw hydrolysis. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11305-y.
Collapse
|
12
|
Wang Y, Sun J, Xue L, Liu J, Nie C, Fan M, Qian H, Zhang D, Ying H, Li Y, Wang L. l-Arabinose Attenuates Gliadin-Induced Food Allergy via Regulation of Th1/Th2 Balance and Upregulation of Regulatory T Cells in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3638-3646. [PMID: 33734700 DOI: 10.1021/acs.jafc.0c07167] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gliadins are the main cause of wheat allergies, and the prevalence of gliadin allergy has increased in many countries. l-Arabinose, a kind of plant-specific five-carbon aldose, possesses beneficial effects on food allergy to gliadins. This study investigated the antiallergic activities and underlying mechanisms of l-arabinose in a wheat gliadin-sensitized mouse model. BALB/c mice were sensitized to gliadin by intraperitoneal injections with gliadin followed by being given a gliadin challenge. l-arabinose-treated mice exhibited a marked reduction in the productions of total immunoglobulin E (IgE), gliadin-specific IgE, gliadin-specific IgG1, and histamine, with an increase in IgG2a level as compared with gliadin-sensitized mice. Beside that, a significant decrease in Th2-related cytokine level, IL-4, and an increase in Th1-related cytokine level, IFN-γ, in the serum and splenocytes were observed after treatment with l-arabinose. l-Arabinose treatment also improved the imbalance of Th1/Th2 immune response on the basis of the expression levels of related cytokines and key transcription factors in the small intestine and spleen of sensitized mice. In addition, gliadin-induced intestinal barrier impairment was blocked by l-arabinose treatment via regulation of TJ proteins and suppression of p38 MAPK and p65 NF-κB inflammation signaling pathways. Notably, the results confirmed that l-arabinose treatment increased CD4+ Foxp3+ T cell populations and Treg-related factors associated with increased expression of IL-2 and activation of STAT5 in gliadin-sensitized mice. In conclusion, l-arabinose attenuated the gliadin-induced allergic symptoms via maintenance of Th1/Th2 immune balance and regulation of Treg cells in a gliadin-induced mouse model, suggesting l-arabinose could be used as a promising agent to alleviate gliadin allergy.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Juan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinxin Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Duo Zhang
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia and Charlie Norwood VA Medical Center, Augusta, Georgia 30912, United States
| | - Hao Ying
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Optimised Fractionation of Brewer’s Spent Grain for a Biorefinery Producing Sugars, Oligosaccharides, and Bioethanol. Processes (Basel) 2021. [DOI: 10.3390/pr9020366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Brewer’s spent grain (BSG) is the main by-product of the beer brewing process. It has a huge potential as a feedstock for bio-based manufacturing processes to produce high-value bio-products, biofuels, and platform chemicals. For the valorisation of BSG in a biorefinery process, efficient fractionation and bio-conversion processes are required. The aim of our study was to develop a novel fractionation of BSG for the production of arabinose, arabino-xylooligomers, xylose, and bioethanol. A fractionation process including two-step acidic and enzymatic hydrolysis steps was investigated and optimised by a response surface methodology and a desirability function approach to fractionate the carbohydrate content of BSG. In the first acidic hydrolysis, high arabinose yield (76%) was achieved under the optimised conditions (90 °C, 1.85 w/w% sulphuric acid, 19.5 min) and an arabinose- and arabino-xylooligomer-rich supernatant was obtained. In the second acidic hydrolysis, the remaining xylan was solubilised (90% xylose yield) resulting in a xylose-rich hydrolysate. The last, enzymatic hydrolysis step resulted in a glucose-rich supernatant (46 g/L) under optimised conditions (15 w/w% solids loading, 0.04 g/g enzyme dosage). The glucose-rich fraction was successfully used for bioethanol production (72% ethanol yield by commercial baker’s yeast). The developed and optimised process offers an efficient way for the value-added utilisation of BSG. Based on the validated models, the amounts of the produced sugars, the composition of the sugar streams and solubilised oligo-saccharides are predictable and variable by changing the reaction conditions of the process.
Collapse
|
14
|
Herrero Manzano M, Eränen K, Freites Aguilera A, Wärnå J, Franz S, Peurla M, García Serna J, Murzin D, Salmi T. Interaction of Intrinsic Kinetics, Catalyst Durability and Internal Mass Transfer in the Oxidation of Sugar Mixtures on Gold Nanoparticle Extrudates. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c05305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maria Herrero Manzano
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre (PCC), Åbo Akademi University, Turku/Åbo FI-20500, Finland
- Escuela de Ingenierías Industriales, Universidad de Valladolid, Valladolid ES-47002, Spain
| | - Kari Eränen
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre (PCC), Åbo Akademi University, Turku/Åbo FI-20500, Finland
| | - Adriana Freites Aguilera
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre (PCC), Åbo Akademi University, Turku/Åbo FI-20500, Finland
| | - Johan Wärnå
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre (PCC), Åbo Akademi University, Turku/Åbo FI-20500, Finland
| | - Sebastian Franz
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre (PCC), Åbo Akademi University, Turku/Åbo FI-20500, Finland
| | - Markus Peurla
- Laboratory of Electron Microscopy, Department of Industrial Physics and Astronomy, University of Turku, Turku/Åbo FI-20500, Finland
| | - Juan García Serna
- Escuela de Ingenierías Industriales, Universidad de Valladolid, Valladolid ES-47002, Spain
| | - Dmitry Murzin
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre (PCC), Åbo Akademi University, Turku/Åbo FI-20500, Finland
| | - Tapio Salmi
- Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre (PCC), Åbo Akademi University, Turku/Åbo FI-20500, Finland
| |
Collapse
|
15
|
Ruchala J, Sibirny AA. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts. FEMS Microbiol Rev 2020; 45:6034013. [PMID: 33316044 DOI: 10.1093/femsre/fuaa069] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Pentose sugars are widespread in nature and two of them, D-xylose and L-arabinose belong to the most abundant sugars being the second and third by abundance sugars in dry plant biomass (lignocellulose) and in general on planet. Therefore, it is not surprising that metabolism and bioconversion of these pentoses attract much attention. Several different pathways of D-xylose and L-arabinose catabolism in bacteria and yeasts are known. There are even more common and really ubiquitous though not so abundant pentoses, D-ribose and 2-deoxy-D-ribose, the constituents of all living cells. Thus, ribose metabolism is example of endogenous metabolism whereas metabolism of other pentoses, including xylose and L-arabinose, represents examples of the metabolism of foreign exogenous compounds which normally are not constituents of yeast cells. As a rule, pentose degradation by the wild-type strains of microorganisms does not lead to accumulation of high amounts of valuable substances; however, productive strains have been obtained by random selection and metabolic engineering. There are numerous reviews on xylose and (less) L-arabinose metabolism and conversion to high value substances; however, they mostly are devoted to bacteria or the yeast Saccharomyces cerevisiae. This review is devoted to reviewing pentose metabolism and bioconversion mostly in non-conventional yeasts, which naturally metabolize xylose. Pentose metabolism in the recombinant strains of S. cerevisiae is also considered for comparison. The available data on ribose, xylose, L-arabinose transport, metabolism, regulation of these processes, interaction with glucose catabolism and construction of the productive strains of high-value chemicals or pentose (ribose) itself are described. In addition, genome studies of the natural xylose metabolizing yeasts and available tools for their molecular research are reviewed. Metabolism of other pentoses (2-deoxyribose, D-arabinose, lyxose) is briefly reviewed.
Collapse
Affiliation(s)
- Justyna Ruchala
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Department of Microbiology and Molecular Genetics, University of Rzeszow, Zelwerowicza 4, Rzeszow 35-601, Poland.,Department of Molecular Genetics and Biotechnology, Institute of Cell Biology NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| |
Collapse
|
16
|
Kvittingen L, Sjursnes BJ. Demonstrating Basic Properties and Application of Polarimetry Using a Self-Constructed Polarimeter. JOURNAL OF CHEMICAL EDUCATION 2020; 97:2196-2202. [PMID: 32905174 PMCID: PMC7467646 DOI: 10.1021/acs.jchemed.9b00763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 06/14/2020] [Indexed: 06/11/2023]
Abstract
An easily constructed and inexpensive polarimeter with an optical rotation angle resolution of about 0.5° is presented. It is made from small pieces of polarizing film, 2 LEDs, a protractor, and a few wires, all held in place with plastic interlocking toy bricks, such as Lego bricks. The instrument was used to demonstrate the optical rotation of plane polarized light as a function of concentration, path length, temperature, and wavelength, and to determine enantiomeric excess in solutions of arabinose, the amount of limonene in citrus ski wax remover, and optical rotations of various types of honeys and essential oils. Results were comparable to values obtained on a commercial scientific instrument, and with literature values.
Collapse
Affiliation(s)
- Lise Kvittingen
- Department
of Chemistry, NTNU, Norwegian University
of Science and Technology, 7491 Trondheim, Norway
| | | |
Collapse
|