1
|
Wu P, Zeng J, Meng L, Wan Q. Glycosylation with sulfoxide-based glycosyl donors. Chem Commun (Camb) 2024. [PMID: 39046327 DOI: 10.1039/d4cc02838d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Sulfoxides have emerged as pivotal constituents in modern carbohydrate chemistry. As anomeric leaving groups, sulfinyl moieties may occupy positions directly at the anomeric position or at a more remote site. This feature article is focused on the evolution and notable advancements of glycosyl sulfoxide donors in glycosylation reactions. Its objective is to elucidate the obstacles and prospects within this evolving research domain, with the aim of enhancing comprehension and progress in the field of carbohydrate chemistry.
Collapse
Affiliation(s)
- Pinru Wu
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jing Zeng
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lingkui Meng
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qian Wan
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, China.
| |
Collapse
|
2
|
Wu P, Xiao X, Zhou S, Meng L, Zeng J, Wan Q. Glycosylation of 2-(2-Propylsulfinyl)benzyl 1,2-Orthoester Glycosides Initiated by Sulfoxide Activation. Org Lett 2024; 26:6053-6058. [PMID: 38985301 DOI: 10.1021/acs.orglett.4c02210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
We have developed a highly effective glycosylation method that involves the activation of 2-(2-propylsulfinyl)benzyl 1,2-orthoester glycosides using triflic anhydride (Tf2O). Our research indicates that half of the glycosyl donor is activated through Tf2O via an interrupted Pummerer reaction mechanism, while the remaining portion is activated by triflic acid (TfOH) generated in situ. As a result, as little as 0.5 equiv of Tf2O is adequate for activating the orthoester glycoside donors. This glycosylation procedure offers several benefits, such as high efficiency, wide applicability, and the utilization of a recyclable leaving group.
Collapse
Affiliation(s)
- Pinru Wu
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P. R. of China
| | - Xiong Xiao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shannxi 700072, P. R. of China
| | - Sicheng Zhou
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P. R. of China
| | - Lingkui Meng
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P. R. of China
| | - Jing Zeng
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P. R. of China
| | - Qian Wan
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P. R. of China
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430071, P. R. of China
| |
Collapse
|
3
|
Aydogan F, Boga M, Khan SI, Zulfiqar F, Khan IA, Ali Z. Phytochemical investigation of Teucrium pruinosum and biological potential assessment of the isolated diterpenoids. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Cai L, Chen Q, Guo J, Liang Z, Fu D, Meng L, Zeng J, Wan Q. Recyclable Fluorous-Tag Assisted Two-Directional Oligosaccharide Synthesis Enabled by Interrupted Pummerer Reaction Mediated Glycosylation. Chem Sci 2022; 13:8759-8765. [PMID: 35975149 PMCID: PMC9350600 DOI: 10.1039/d2sc01700h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, we report a novel fluorous-tag assisted two-directional oligosaccharide assembly strategy, which combines the advantages of solution-phase synthesis and solid-phase synthesis. A well-designed fluorous-tag was decorated on the latent anomeric...
Collapse
Affiliation(s)
- Lei Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Qi Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Jian Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Zhihua Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Dengxian Fu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology 13 Hangkong Road Wuhan Hubei 430030 China
| |
Collapse
|
5
|
Sun J, Fang J, Xiao X, Cai L, Zhao X, Zeng J, Wan Q. Total synthesis of tricolorin A via interrupted Pummerer reaction-mediated glycosylation and one-pot relay glycosylation. Org Biomol Chem 2021; 18:3818-3822. [PMID: 32297605 DOI: 10.1039/d0ob00513d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Tricolorin A, a bioactive resin glycoside, was synthesized stepwise or in one pot based on interrupted Pummerer reaction-mediated (IPRm) glycosylation. The stepwise synthesis adopted a [2 + 2] assembly sequence, and all of the glycosidic bonds were constructed efficiently by IPRm glycosylation. The one-pot synthesis employed our recently developed one-pot relay glycosylation strategy, in which two different glycosidic bonds were sequentially connected with only one equivalent of external activator.
Collapse
Affiliation(s)
- Jiuchang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China.
| | - Jing Fang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China.
| | - Xiong Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China.
| | - Lei Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China.
| | - Xiang Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China.
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China.
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China. and Institute of Brain Research, Huazhong University of Science and Technology, China
| |
Collapse
|
6
|
Cai L, Meng L, Zeng J, Wan Q. Sequential activation of thioglycosides enables one-pot glycosylation. Org Chem Front 2021. [DOI: 10.1039/d0qo01414a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review describes recent developments in relative reactivity value (RRV) controlled sequential glycosylation, pre-activation based iterative glycosylation, and sulfoxide activation initiated one-pot glycosylation.
Collapse
Affiliation(s)
- Lei Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| |
Collapse
|
7
|
Six Natural Phenylethanoid Glycosides: Total Synthesis, Antioxidant and Tyrosinase Inhibitory Activities. ChemistrySelect 2020. [DOI: 10.1002/slct.202002608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Xiao X, Zeng J, Fang J, Sun J, Li T, Song Z, Cai L, Wan Q. One-Pot Relay Glycosylation. J Am Chem Soc 2020; 142:5498-5503. [PMID: 32150398 DOI: 10.1021/jacs.0c00447] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel one-pot relay glycosylation has been established. The protocol is characterized by the construction of two glycosidic bonds with only one equivalent of triflic anhydride. This method capitalizes on the in situ generated cyclic-thiosulfonium ion as the relay activator, which directly activates the newly formed thioglycoside in one pot. A wide range of substrates are well-accommodated to furnish both linear and branched oligosaccharides. The synthetic utility and advantage of this method have been demonstrated by rapid access to naturally occurring phenylethanoid glycoside kankanoside F and resin glycoside merremoside D.
Collapse
Affiliation(s)
- Xiong Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| | - Jing Fang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| | - Jiuchang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| | - Ting Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| | - Zejin Song
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| | - Lei Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China.,Institute of Brain Research, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China
| |
Collapse
|
9
|
Zhao X, Zeng J, Meng L, Wan Q. Application of Interrupted Pummerer Reaction Mediated (IPRm) Glycosylation in Natural Product Synthesis. CHEM REC 2020; 20:743-751. [DOI: 10.1002/tcr.201900097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Xiang Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology 13 Hangkong Road, Wuhan Hubei 430030 China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology 13 Hangkong Road, Wuhan Hubei 430030 China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology 13 Hangkong Road, Wuhan Hubei 430030 China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology 13 Hangkong Road, Wuhan Hubei 430030 China
- Institute of Brain ResearchHuazhong University of Science and Technology China
| |
Collapse
|
10
|
Cai L, Zeng J, Li T, Xiao Y, Ma X, Xiao X, Zhang Q, Meng L, Wan Q. Dehydrative Glycosylation Enabled by a Comproportionation Reaction of 2‐Aryl‐1,3‐dithiane 1‐Oxide
†. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lei Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Ting Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Ying Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Xiang Ma
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Xiong Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Qin Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
- Institute of Brain Research, Huazhong University of Science and Technology, 13 Hangkong Road Wuhan Hubei 430030 China
| |
Collapse
|
11
|
Meng L, Wu P, Fang J, Xiao Y, Xiao X, Tu G, Ma X, Teng S, Zeng J, Wan Q. Glycosylation Enabled by Successive Rhodium(II) and Brønsted Acid Catalysis. J Am Chem Soc 2019; 141:11775-11780. [DOI: 10.1021/jacs.9b04619] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Peng Wu
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Jing Fang
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Ying Xiao
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Xiong Xiao
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Guangsheng Tu
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Xiang Ma
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Shuang Teng
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal
Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| |
Collapse
|