1
|
Abronina PI, Novikov DS, Malysheva NN, Zinin AI, Chizhov AO, Kononov LO. Stereocontrolled 1,2-trans-arabinofuranosylation in the absence of 2-O-acyl group in glycosyl donor. Carbohydr Res 2024; 544:109252. [PMID: 39217847 DOI: 10.1016/j.carres.2024.109252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Stereocontrolled 1,2-trans-α-arabinofuranosylation using polysilylated mono- and disaccharide glycosyl donors was investigated. A complete α-stereoselectivity of 1,2-trans-arabinofuranosylation was found for Ara-β-(1 → 2)-Ara disaccharide glycosyl donors containing five triisopropylsilyl (TIPS) groups with arylthiol (1) (as shown in our previous publications) or N-phenyltrifluoroacetimidoyl (2) (this work) leaving groups. Conversely, in case of monosaccharide thioglycosides polysilylated with acyclic silyl groups (TIPS, TBDPS), stereoselectivity of glycosylation was lower (α:β = 7-8:1), although the desired α-isomer still dominated. Disaccharide glycosyl donor 2 was successfully used in the synthesis of linear α-(1 → 5)-, β-(1 → 2)-linked hexaarabinofuranoside useful for further preparation of conjugates thereof as antigens valuable for the diagnosis of mycobacterioses.
Collapse
Affiliation(s)
- Polina I Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation.
| | - Dmitry S Novikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Nelly N Malysheva
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp. 47, 119991, Moscow, Russian Federation.
| |
Collapse
|
2
|
Abronina PI, Malysheva NN, Zinin AI, Novikov DS, Panova MV, Kononov LO. Unusual triflic acid-promoted oligomerization of arabinofuranosides during glycosylation. Carbohydr Res 2024; 540:109141. [PMID: 38740000 DOI: 10.1016/j.carres.2024.109141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
We discovered an unusual triflic acid-promoted oligomerization of arabinofuranosides during glycosylation of the primary hydroxy group of α-(1 → 5)-linked tetraarabinofuranoside bearing 4-(2-chloroethoxy)phenyl aglycone with α-(1 → 5), β-(1 → 2)-linked tetraarabinofuranoside containing N-phenyltrifluoroacetimidoyl leaving group, which led to octa-, dodeca- and hexadecaarabinofuranosides. The possible mechanism of triflic acid-promoted oligomerization was proposed. The choice of promoter was found to be a critical factor for the discovered oligomerization of arabinofuranosides. The obtained octa-, dodeca- and hexadecaarabinofuranosides may serve as useful blocks in the synthesis of oligosaccharide fragments of polysaccharides of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Polina I Abronina
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation.
| | - Nelly N Malysheva
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
| | - Alexander I Zinin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
| | - Dmitry S Novikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
| | - Maria V Panova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
| | - Leonid O Kononov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
3
|
Ma Y, Zhang Y, Huang Y, Chen Z, Xian Q, Su R, Jiang Q, Wang X, Xiao G. One-Pot Assembly of Mannose-Capped Lipoarabinomannan Motifs up to 101-Mer from the Mycobacterium tuberculosis Cell Wall. J Am Chem Soc 2024; 146:4112-4122. [PMID: 38226918 DOI: 10.1021/jacs.3c12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Lipoarabinomannan (LAM) from the Mycobacterium tuberculosis cell envelope represents important targets for the development of new therapeutic agents against tuberculosis, which is a deadly disease that has plagued mankind for a long time. However, the accessibility of long, branched, and complex lipoarabinomannan over 100-mer remains a long-standing challenge. Herein, we report the modular synthesis of mannose-capped lipoarabinomannan 101-mer from the M. tuberculosis cell wall using a one-pot assembly strategy on the basis of glycosyl ortho-(1-phenylvinyl)benzoates (PVB), which not only accelerates the modular synthesis but also precludes the potential problems associated with one-pot glycosylation with thioglycosides. Shorter sequences including 18-mer, 19-mer, and 27-mer are also synthesized for in-depth structure-activity relationship biological studies. Current synthetic routes also highlight the following features: (1) streamlined synthesis of various linear and branched glycans using one-pot orthogonal glycosylation on the combination of glycosyl N-phenyltrifluoroacetimidates, glycosyl ortho-alkynylbenzoates, and glycosyl PVB; (2) highly stereoselective construction of 10 1,2-cis-arabinofuranosyl linkages using 5-O-(2-quinolinecarbonyl)-directing 1,2-cis-arabinofuranosylation via a hydrogen-bond-mediated aglycone delivery strategy; and (3) convergent [(18 + 19) × 2 + 27] one-pot synthesis of the 101-mer LAM polysaccharide. The present work demonstrates that this orthogonal one-pot glycosylation strategy can highly streamline the chemical synthesis of long, branched, and complex polysaccharides.
Collapse
Affiliation(s)
- Yuxin Ma
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Yingying Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Zixi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Qingyun Xian
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Rui Su
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| | - Qiong Jiang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Xiufang Wang
- Department of Chemistry, Kunming University, 2 Puxing Road, Kunming 650214, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
4
|
Liu Y, Huang Y, Zhu R, Farag MA, Capanoglu E, Zhao C. Structural elucidation approaches in carbohydrates: A comprehensive review on techniques and future trends. Food Chem 2023; 400:134118. [DOI: 10.1016/j.foodchem.2022.134118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
|
5
|
Synthesis of selectively protected α-(1→3)- and α-(1→5)-linked octasaccharide moiety bearing a Janus aglycone, related to the branching site of mycobacterial polysaccharides. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
7
|
Basu N, Ghosh R. Recent chemical syntheses of bacteria related oligosaccharides using modern expeditious approaches. Carbohydr Res 2021; 507:108295. [PMID: 34271477 DOI: 10.1016/j.carres.2021.108295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022]
Abstract
Apart from some essential and crucial roles in life processes carbohydrates also are involved in a few detrimental courses of action related to human health, like infections by pathogenic microbes, cancer metastasis, transplanted tissue rejection, etc. Regarding management of pathogenesis by microbes, keeping in mind of multi drug-resistant bacteria and epidemic or endemic incidents, preventive measure by vaccination is the best pathway as also recommended by the WHO; by vaccination, eradication of bacterial diseases is also possible. Although some valid vaccines based on attenuated bacterial cells or isolated pure polysaccharide-antigens or the corresponding conjugates thereof are available in the market for prevention of several bacterial diseases, but these are not devoid of some disadvantages also. In order to develop improved conjugate T-cell dependent vaccines oligosaccharides related to bacterial antigens are synthesized and converted to the corresponding carrier protein conjugates. Marketed Cuban Quimi-Hib is such a vaccine being used since 2004 to resist Haemophilus influenza b infections. During nearly the past two decades research is going on worldwide for improved synthesis of bacteria related oligosaccharides or polysaccharides towards development of such semisynthetic or synthetic glycoconjugate vaccines. The present dissertation is an endeavour to encompass the recent syntheses of several pathogenic bacterial oligosaccharides or polysaccharides, made during the past ten-eleven years with special reference to modern expeditious syntheses.
Collapse
Affiliation(s)
- Nabamita Basu
- Department of Chemistry, Nabagram Hiralal Paul College, Konnagar, Hoogly, West Bengal, 712246, India
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, 700 032, India.
| |
Collapse
|
8
|
Wang L, Kong H, Jin M, Li X, Stoika R, Lin H, Liu K. Synthesis of disaccharide modified berberine derivatives and their anti-diabetic investigation in zebrafish using a fluorescence-based technology. Org Biomol Chem 2021; 18:3563-3574. [PMID: 32347284 DOI: 10.1039/d0ob00327a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Berberine is a naturally occurring isoquinoline alkaloid and has been used as an important functional food additive in China due to its various pharmacological activities. Berberine exhibits great potential for developing anti-diabetic agents against type 2 diabetes mellitus (T2DM), as it can reduce the blood glucose level in many animal models. However, the low anti-diabetic activity and poor bioavailability of berberine (below 5%) by oral administration significantly limit its practical applications. To solve these problems, this article focuses on the structural modification of berberine using some disaccharide groups, because the carbohydrate moiety has been proved to improve the bioavailability and enhance the receptor-binding affinity of drugs. Anti-diabetic investigation of the synthesized compounds was performed in a zebrafish model using a fluorescently labelled glucose analog 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-d-glucose (2-NBDG) as a glucose tracker. The results indicated that the modification of berberine with carbohydrate groups could give derivatives with improved anti-diabetic activity, in particular the diglucose modified berberine derivative 1 which could dramatically promote the uptake of 2-NBDG in both zebrafish larvae and their eyes even at very low concentrations. Furthermore, the fluorescence-based anti-diabetic investigation method in zebrafish shows great potential for anti-diabetic drug screening.
Collapse
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong Province, China.
| | | | | | | | | | | | | |
Collapse
|