1
|
Al-Sanea MM, Blacque O, Mohamed AAB, Tiekink ERT, El-Emam AA. Crystal structure of N-(4-bromophenyl)-4-[3-(trifluoromethyl)phenyl]-piperazine-1-carbothioamide, C 18H 17BrF 3N 3S. Z KRIST-NEW CRYST ST 2023. [DOI: 10.1515/ncrs-2022-0544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abstract
C18H17BrF3N3S, triclinic,
P
1
‾
$P\overline{1}$
(no. 2), a = 8.6380(2) Å, b = 14.5082(3) Å, c = 14.8000(3) Å, α = 98.177(2)°, β = 97.015(2)°, γ = 91.111(2)°, V = 1820.89(7) Å3, Z = 4, R
gt(F) = 0.0296, wR
ref(F
2) = 0.0783, T = 160 K.
Collapse
Affiliation(s)
- Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry , College of Pharmacy, Jouf University , Sakaka , Aljouf 72341 , Saudi Arabia
| | - Olivier Blacque
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190, 8057 Zurich , Switzerland
| | - Ahmed A. B. Mohamed
- Department of Medicinal Chemistry , Faculty of Pharmacy, Mansoura University , Mansoura 35516 , Egypt
| | - Edward R. T. Tiekink
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University , 47500 Bandar Sunway , Selangor Darul Ehsan , Malaysia
| | - Ali A. El-Emam
- Department of Medicinal Chemistry , Faculty of Pharmacy, Mansoura University , Mansoura 35516 , Egypt
| |
Collapse
|
2
|
Al-Wahaibi LH, Blacque O, Al-Shaalan NH, Tiekink ERT, El-Emam AA. Crystal structure of N-ethyl-4-[3-(trifluoromethyl)-phenyl]piperazine-1-carbothioamide, C 14H 18F 3N 3S. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
C14H18F3N3S, monoclinic, P21/c (no. 14), a = 4.61919(4) Å, b = 29.1507(3) Å, c = 11.27803(10) Å, β = 94.4768(8)°, V = 1513.99(3) Å3, Z = 4, R
gt
(F) = 0.0588, wR
ref
(F
2) = 0.1579, T = 160 K.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry , College of Sciences, Princess Nourah bint Abdulrahman University , Riyadh 11671 , Saudi Arabia
| | - Olivier Blacque
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , 8057 Zurich , Switzerland
| | - Nora H. Al-Shaalan
- Department of Chemistry , College of Sciences, Princess Nourah bint Abdulrahman University , Riyadh 11671 , Saudi Arabia
| | - Edward R. T. Tiekink
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University , 47500 Bandar Sunway , Selangor Darul Ehsan , Malaysia
| | - Ali A. El-Emam
- Department of Medicinal Chemistry , Faculty of Pharmacy, Mansoura University , Mansoura 35516 , Egypt
| |
Collapse
|
3
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
4
|
Tiwari VK. Development of Diverse Range of Biologically Relevant Carbohydrate-Containing Molecules: Twenty Years of Our Journey*. CHEM REC 2021; 21:3029-3048. [PMID: 34047444 DOI: 10.1002/tcr.202100058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Indexed: 11/12/2022]
Abstract
There is an increasing demand for significant amount of carbohydrate-containing molecules owing to their complete chemical, biological, and pharmacological investigations to better understand their role in many important biological events. Clinical studies of a wide range of simple carbohydrates or their derivatives, glycohybrids, glycoconjugates, and neoglycoconjugates have been conducted worldwide for the successful treatment of various frontline diseases. Herein, a brief perspective of carbohydrate-based molecular scaffolding and my experience during the last 20 years in the area of synthetic carbohydrate chemistry, mainly for their impact in drug discovery & development, is presented.
Collapse
Affiliation(s)
- Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, U.P.-221005, India
| |
Collapse
|