1
|
Miles MA, Luong R, To EE, Erlich JR, Liong S, Liong F, Logan JM, O’Leary J, Brooks DA, Selemidis S. TLR9 Monotherapy in Immune-Competent Mice Suppresses Orthotopic Prostate Tumor Development. Cells 2024; 13:97. [PMID: 38201300 PMCID: PMC10778079 DOI: 10.3390/cells13010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Prostate cancer is ranked second in the world for cancer-related deaths in men, highlighting the lack of effective therapies for advanced-stage disease. Toll-like receptors (TLRs) and immunity have a direct role in prostate cancer pathogenesis, but TLR9 has been reported to contribute to both the progression and inhibition of prostate tumorigenesis. To further understand this apparent disparity, we have investigated the effect of TLR9 stimulation on prostate cancer progression in an immune-competent, syngeneic orthotopic mouse model of prostate cancer. Here, we utilized the class B synthetic agonist CPG-1668 to provoke a TLR9-mediated systemic immune response and demonstrate a significant impairment of prostate tumorigenesis. Untreated tumors contained a high abundance of immune-cell infiltrates. However, pharmacological activation of TLR9 resulted in smaller tumors containing significantly fewer M1 macrophages and T cells. TLR9 stimulation of tumor cells in vitro had no effect on cell viability or its downstream transcriptional targets, whereas stimulation in macrophages suppressed cancer cell growth via type I IFN. This suggests that the antitumorigenic effects of CPG-1668 were predominantly mediated by an antitumor immune response. This study demonstrated that systemic TLR9 stimulation negatively regulates prostate cancer tumorigenesis and highlights TLR9 agonists as a useful therapeutic for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Mark A. Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Raymond Luong
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Eunice E. To
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Jonathan R. Erlich
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Stella Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Felicia Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Jessica M. Logan
- Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - John O’Leary
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, D8 Dublin, Ireland
- Sir Patrick Dun’s Laboratory, Central Pathology Laboratory, St James’s Hospital, D8 Dublin, Ireland
- Molecular Pathology Laboratory, Coombe Women and Infants’ University Hospital, D8 Dublin, Ireland
| | - Doug A. Brooks
- Cancer Research Institute, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, D8 Dublin, Ireland
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
2
|
Anti-Niemann Pick C1 Single-Stranded Oligonucleotides with Locked Nucleic Acids Potently Reduce Ebola Virus Infection In Vitro. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:686-697. [PMID: 31125846 PMCID: PMC6529764 DOI: 10.1016/j.omtn.2019.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/12/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
Ebola virus is the causative agent of Ebola virus disease, a severe, often fatal illness in humans. So far, there are no US Food and Drug Administration (FDA)-approved therapeutics directed against Ebola virus. Here, we selected the host factor Niemann-Pick C1 (NPC1), which has been shown to be essential for Ebola virus entry into host cytoplasm, as a therapeutic target for suppression by locked nucleic acid-modified antisense oligonucleotides. Screening of antisense oligonucleotides in human and murine cell lines led to identification of candidates with up to 94% knockdown efficiency and 50% inhibitory concentration (IC50) values in the submicromolar range. Selected candidate oligonucleotides led to efficient NPC1 protein knockdown in vitro without alteration of cell viability. Furthermore, they did not have immune stimulatory activity in cell-based assays. Treatment of Ebola-virus-infected HeLa cells with the most promising candidates resulted in significant (>99%) virus titer reduction, indicating that antisense oligonucleotides against NPC1 are a promising therapeutic approach for treatment of Ebola virus infection.
Collapse
|
3
|
Ding C, Li L, Zhang Y, Ji Z, Zhang C, Liang T, Guo X, Liu X, Kang Q. Toll-like receptor agonist rMBP-NAP enhances antitumor cytokines production and CTL activity of peripheral blood mononuclear cells from patients with lung cancer. Oncol Lett 2018; 16:4707-4712. [PMID: 30214604 PMCID: PMC6126164 DOI: 10.3892/ol.2018.9182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/30/2018] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptor (TLR) agonists are known for their ability to inhibit tumor progression via enhancing antitumor cytokines production and cytotoxic T lymphocyte (CTL) activity. Recombinant Helicobacter pylori neutrophil-activating protein fused with maltose-binding protein (rMBP-NAP) has been reported as a novel TLR agonist for antitumor treatment in murine models. The present study aimed to determine the potential and efficacy of the rMBP-NAP for antitumor treatment prior to further clinical trials. The rMBP-NAP was expressed and purified for subsequent experiments. Peripheral blood mononuclear cells (PBMCs) from health donors and patients with lung cancer (LC) were incubated with PBS and 0.2 mg/ml rMBP-NAP. Antitumor cytokines production was assayed using ELISA and reverse transcription-quantitative polymerase chain reaction analysis. The cytolytic activity of PBMCs and the number of Interferon-γ (IFN-γ)-secreting cells were assayed using lactate dehydrogenase and Enzyme-linked ImmunoSpot assays, respectively. The results from the present study revealed that the expression of IFN-γ, interleukin (IL)-2, tumor necrosis factor-α and IL-12 of PBMCs from patients with LC and healthy donors were significantly increased following treatment with rMBP-NAP (P<0.05). Additionally, rMBP-NAP significantly upregulated the number of IFN-γ-secreting cells in PBMCs and prominently increased the cytotoxic activity of PBMCs (P<0.05). Furthermore, the expression of TLR2 was significantly enhanced following rMBP-NAP stimulation (P<0.05), which indicated that rMBP-NAP may serve an antitumor role via TLR2 signaling pathways. Overall, these results demonstrated that rMBP-NAP possesses the potential to be a novel immunomodulatory candidate drug and requires further evaluation in clinical trials.
Collapse
Affiliation(s)
- Cong Ding
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Li Li
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhenyu Ji
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chenglong Zhang
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Taotao Liang
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xun Guo
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xin Liu
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Qiaozhen Kang
- Department of Protein Function and Immunomodulatory Laboratory, School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
4
|
Koo JE, Shin SW, Um SH, Lee JY. X-shaped DNA potentiates therapeutic efficacy in colitis-associated colon cancer through dual activation of TLR9 and inflammasomes. Mol Cancer 2015; 14:104. [PMID: 25971982 PMCID: PMC4431032 DOI: 10.1186/s12943-015-0369-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/21/2015] [Indexed: 12/20/2022] Open
Abstract
Background Immunotherapy has been extensively pursed as a promising strategy for the treatment of cancer. Pattern-recognition receptors (PRRs) play important roles in triggering activation of innate and adaptive immunity. Therefore, agents that stimulate PRRs could be useful for cancer immunotherapy. We developed two kinds of X-shaped double-stranded oligodeoxynucleotides (X-DNA), a single unit of X-DNA (XS-DNA) composed of four strands of DNA and a ligated X-DNA complex (XL-DNA) formed by crosslinking each XS-DNA to the other, and investigated if they had immunostimulatory activity and could be applied to anti-cancer immunotherapy. Methods Activation of MAPKs and NF-κB was determined by immunoblotting in bone marrow-derived primary dendritic cells (BMDCs). Immune cytokines and co-stimulatory molecules were measured by ELISA and flow cytometry analysis. Anti-cancer efficacy was examined in an azoxymethane/dextran sulfate sodium-induced colitis-associated colon cancer mouse model. Association of X-DNA and TLR9 was determined by co-immunoprecipitation followed by immunoblotting. The involvement of TLR9 and inflammasomes was determined using TLR9- or caspase-1-deficient BMDCs. Inflammasome activation was examined by degradation of pro-caspase-1 to caspase-1 and cleavage of pro-IL-1β to IL-1β in BMDCs. Results XL-DNA and XS-DNA induced activation of MAPKs and NF-κB and production of immune cytokines and co-stimulatory molecules in BMDCs. BMDCs stimulated by XL-DNA induced differentiation of naïve CD4+ T cells to TH1 cells. Intravenous injection of XL-DNA into mice resulted in increased serum IFN-γ and IL-12 levels, showing in vivo efficacy of XL-DNA to activate TH1 cells and dendritic cells. XL-DNA greatly enhanced the therapeutic efficacy of doxorubicin, an anti-cancer drug, in colitis-associated colon cancer. XL-DNA directly associated with TLR9. In addition, immunostimulatory activities of X-DNA were abolished in TLR9-deficient dendritic cells. Furthermore, X-DNA induced caspase-1 degradation and IL-1β secretion in BMDCs, which were abolished in caspase-1-deficient cells. Conclusions X-DNA induced the activation of dendritic cells as shown by the expression of immune-cytokines and co-stimulatory molecules, resulting in the differentiation of TH1 cells, mediated through dual activation of TLR9 and inflammasomes. X-DNA represents a promising immune adjuvant that can enhance the therapeutic efficacy of anti-cancer drugs by activating PRRs. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0369-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jung Eun Koo
- Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, 420-743, Bucheon, Republic of Korea.
| | - Seung Won Shin
- School of Chemical Engineering and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 440-746, Suwon, Republic of Korea.
| | - Soong Ho Um
- School of Chemical Engineering and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 440-746, Suwon, Republic of Korea.
| | - Joo Young Lee
- Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, 420-743, Bucheon, Republic of Korea.
| |
Collapse
|
5
|
Yang LS, Wu WS, Zhang F, Jiang Y, Fan Y, Fang HX, Long J. Role of toll-like receptors in lung cancer. J Recept Signal Transduct Res 2014; 34:342-4. [PMID: 24641697 DOI: 10.3109/10799893.2014.903418] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lung cancer is a leading cause of death world-wide and the long-term survival rate for patients with lung cancer is one of the lowest for any cancer. Toll-like receptors (TLRs), evolutionarily conserved innate, are expressed in a wide variety of tissues and cell types, and they play key role in the innate immune system. TLRs have been found to be expressed by some kinds of tumor cells. However, what is the biological function of TLRs on tumor cells and whether human lung cancer cells can express TLRs remain to be fully understood. This review was performed to sum up the role of TLRs in lung cancer.
Collapse
Affiliation(s)
- Liu-Shan Yang
- Department of Cardio-Thoracic Surgery, The Affiliated Ruikang Hospital of Guangxi University of traditional Chinese Medicine , NanNing , China
| | | | | | | | | | | | | |
Collapse
|
6
|
Xu Z, Wu F, Wang C, Liu X, Kang B, Shan S, Gu X, Wang K, Ren T. The stimulatory activity of plasma in patients with advanced non-small cell lung cancer requires TLR-stimulating nucleic acid immunoglobulin complexes and discriminates responsiveness to chemotherapy. Cancer Cell Int 2014; 14:80. [PMID: 25788863 PMCID: PMC4364047 DOI: 10.1186/s12935-014-0080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 07/30/2014] [Indexed: 11/16/2022] Open
Abstract
Background Therapeutic options for patients with non-small cell lung cancer (NSCLC) are often restricted to systemic chemotherapy. However, the molecular and cellular processes during chemotherapy of advanced NSCLC patients still remain unclear. Here we investigated the stimulatory activity of plasma in advanced NSCLC patients and its correlation with chemotherapy. Methods Whole blood samples from advanced NSCLC patients were collected before the first, second, and third cycle of chemotherapy. Plasma was isolated following centrifugation of whole blood. PBMCs were isolated from whole-blood specimens by Ficoll-Hypaque density gradient centrifugation. Immune complexes (ICs) were isolated from NSCLC plasma using the IgG Purification Kit. qRT-PCR was used to detect a broad array of cytokines and chemokines. Results The plasma in advanced NSCLC patients was endowed with stimulatory activity and capable of inducing proinflammatory cytokines. Both nucleic acids and immunoglobulin components were required for the stimulatory activity of NSCLC plasma. In consistent, TLR8 and TLR9 conferred the stimulatory activity of plasma in NSCLC patients. Of note, we revealed the decreased stimulatory activity of plasma in patients who responded to chemotherapy. Conclusions Our findings demonstrated that the plasma of advanced NSCLC patients required TLR-stimulating nucleic acid immunoglobulin complexes and could discriminate the responsiveness to chemotherapy, which might provide a novel mechanism by which the proinflammatory immune response was induced and a potential new biomarker for evaluating responsiveness to chemotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Zengguang Xu
- Department of Scientific Research, East Hospital, Tongji University School of Medicine, Shanghai 200120, China ; Department of Preventive Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fengying Wu
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunhong Wang
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New Area, Shanghai 200120, China
| | - Xiyu Liu
- Department of Chest Surgery, The Bethune First Hospital of Jilin University, Changchun, China
| | - Baoli Kang
- Department of Preventive Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shan Shan
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xia Gu
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New Area, Shanghai 200120, China
| | - Kailing Wang
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New Area, Shanghai 200120, China
| | - Tao Ren
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New Area, Shanghai 200120, China
| |
Collapse
|
7
|
Mai CW, Kang YB, Pichika MR. Should a Toll-like receptor 4 (TLR-4) agonist or antagonist be designed to treat cancer? TLR-4: its expression and effects in the ten most common cancers. Onco Targets Ther 2013; 6:1573-87. [PMID: 24235843 PMCID: PMC3821792 DOI: 10.2147/ott.s50838] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Toll-like receptor 4 (TLR-4) is well known for its host innate immunity. Despite the fact that TLR-4 activation confers antitumor responses; emerging evidence suggests that TLR-4 is associated with tumor development and progression. It is now clear that overactivation of TLR-4, through various immune mediators, may cause immune response dysfunction, resulting in tumorigenesis. Different cancers could have different extents of TLR-4 involvement during tumorigenesis or tumor progression. In this review, we focus on infection- and inflammation-related TLR-4 activation in noncancer and cancer cells, as well as on the current evidence about the role of TLR-4 in ten of the most common cancers, viz, head and neck cancer, lung cancer, gastrointestinal cancer, liver cancer, pancreatic cancer, skin cancer, breast cancer, ovarian cancer, cervical cancer, and prostate cancer.
Collapse
Affiliation(s)
- Chun Wai Mai
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Yew Beng Kang
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Correspondence: Mallikarjuna Rao Pichika, Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia, Tel +60 32 731 7208, Fax +60 38 656 7229, Email
| |
Collapse
|
8
|
Lai ZZ, Ni-Zhang, Pan XL, Song L. Toll-like receptor 9 (TLR9) gene polymorphisms associated with increased susceptibility of human papillomavirus-16 infection in patients with cervical cancer. J Int Med Res 2013; 41:1027-36. [PMID: 23816930 DOI: 10.1177/0300060513483398] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives To investigate the association between toll-like receptor 9 ( TLR9) single nucleotide polymorphisms (SNPs) and human papillomavirus (HPV) infection among Chinese Han women with cervical cancer. Methods TLR9 –1486 and 2848 SNPs were investigated in patients with cervical cancer and controls using polymerase chain reaction (PCR)-restriction fragment length polymorphism. HPV16 E6 and E7 infections were assessed using PCR. Results Of 120 patients with cervical cancer and 100 controls, there was a significant association between TLR9 2848 SNP and cervical cancer risk, but there was no such association with TLR9 –1486 SNP. Frequency of the TLR9 2848 GA genotype was significantly higher in patients with cervical cancer than in controls. There was no statistically significant between-group difference in presence of HPV16 infection. Presence of HPV infection with TLR9 2848 (rs352140) GA/AA genotype increased the risk of cervical cancer 13.8-fold compared with the GG genotype. Conclusions The TLR9 2848 G/A polymorphism in Chinese Han women was associated with increased risk of cervical cancer in the presence of HPV16 infection. Further studies are necessary to uncover the functional aspect of this TLR9 2848 polymorphism.
Collapse
Affiliation(s)
- Zeng-Zhen Lai
- Department of Obstetrics and Gynaecology, West China Second Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynaecology, People’s Hospital of Deyang City, Deyang, China
| | - Ni-Zhang
- Department of Obstetrics and Gynaecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xiao-Ling Pan
- Department of Obstetrics and Gynaecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Liang Song
- Department of Obstetrics and Gynaecology, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Li Q, Han Y, Fei G, Guo Z, Ren T, Liu Z. IL-17 promoted metastasis of non-small-cell lung cancer cells. Immunol Lett 2012; 148:144-50. [PMID: 23089548 DOI: 10.1016/j.imlet.2012.10.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/12/2012] [Indexed: 12/25/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. Recent data suggested that IL-17 might be a pivotal cytokine involved in tumor progression of NSCLC. However, the direct effect of IL-17 on metastasis of NSCLC cells still remains intractable. In this study, we found that the metastasis of NSCLC was significantly impaired in IL-17⁻/⁻ mice. Further, we revealed that IL-17 could directly promote the invasion of NSCLC cells both in vitro and in vivo. Furthermore, we found that IL-6-Stat3 pathway was crucial for IL-17 to enhance the invasive potential of NSCLC cells. Finally, we found that elevated expression of IL-17 in peripheral blood was associated with the TNM stage, and elevated expression of IL-17R in NSCLC cells was associated with their invasive potential in NSCLC patients. These findings could facilitate our understanding of the potential role of IL-17 in tumor biology, and provide clues for developing promising strategies against NSCLC.
Collapse
Affiliation(s)
- Qinchuan Li
- Department of Cardiothoracic Surgery, East Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
10
|
Xu L, Wang C, Zhou Y, Ren T, Wen Z. CpG oligonucleotides induce the differentiation of CD4(+)Th17 cells by triggering plasmacytoid dendritic cells in adoptively cell transfer immunotherapy. Immunol Lett 2012; 142:55-63. [PMID: 22249078 DOI: 10.1016/j.imlet.2011.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/28/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022]
Abstract
Our previous data showed that CpG-ODNs could significantly enhance the anti-tumor efficacy of adoptively cell transfer (ACT), which was closely correlated to accumulation of Th17 cells in tumor mass. Here we further investigated that CpG-ODNs had no significant effect on the migration and proliferation capacity of Th17 cells in tumor mass. Instead, we showed that CpG-ODNs could induce the differentiation of Th17 cells via dendritic cells (DCs) in tumor infiltrating lymphocytes (TILs). Notably, we found that plasmacytoid dendritic cells (pDCs), but not myeloid dendritic cells (mDCs), were responsible for the Th17 differentiation induced by CpG-ODNs via IL-6, TGF-β and IFN-α in vitro. Finally, we revealed that CpG-ODNs could stimulate pDCs to induce the differentiation of Th17 cells in vivo, which subsequently reduced the tumor size and prolonged the survival of tumor bearing nude mice. These data provided a novel insight into the mechanism of anti-tumor efficacy of CpG-ODNs based therapeutic strategy.
Collapse
Affiliation(s)
- Lin Xu
- Department of Immunology, Zunyi Medical College, Guizhou, China
| | | | | | | | | |
Collapse
|
11
|
Reduced efficacy of multiple doses of CpG-matured dendritic cell tumor vaccine in an experimental model. Cell Immunol 2011; 271:360-4. [PMID: 21889129 DOI: 10.1016/j.cellimm.2011.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/19/2011] [Accepted: 08/01/2011] [Indexed: 11/20/2022]
Abstract
CpG motifs have been advanced as agents that stimulate the maturation of DCs for immunotherapy. The present study tested the hypothesis that multiple doses of CpG-matured DC vaccine would be efficacious for complete eradication of experimentally-induced tumor. Accordingly, WEHI164 cells were implanted subcutaneously in the flank of BALB/c mice. During DC culture, tumor lysate was added to immature DCs followed by addition of CpG or non-CpG control 4-6h later. A total of three doses of CpG or non-CpG control-matured DCs were injected around tumors. The results showed that multiple doses of CpG-matured DCs led to considerable decrease in cytotoxicity of lymphocytes and significantly increased tumor growth rate compared to a single dose. Further, mice which received three doses of the vaccine also displayed significant FoxP3 in tumor tissue. In conclusion, multiple doses of CpG-matured DCs exhibited decreased anti-tumor immunity in association with increased expression of FoxP3.
Collapse
|
12
|
CpG oligodeoxynucleotides enhance the efficacy of adoptive cell transfer using tumor infiltrating lymphocytes by modifying the Th1 polarization and local infiltration of Th17 cells. Clin Dev Immunol 2010; 2010:410893. [PMID: 20981279 PMCID: PMC2963116 DOI: 10.1155/2010/410893] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/13/2010] [Accepted: 09/26/2010] [Indexed: 11/17/2022]
Abstract
Adoptive cell transfer immunotherapy using tumor infiltrating lymphocytes (TILs) was an important therapeutic strategy against tumors. But the efficacy remains limited and development of new strategies is urgent. Recent evidence suggested that CpG-ODNs might be a potent candidate for tumor immunotherapy. Here we firstly reported that CpG-ODNs could significantly enhance the antitumor efficacy of adoptively transferred TILs in vivo accompanied by enhanced activity capacity and proliferation of CD8+ T cells and CD8+ T cells, as well as a Th1 polarization immune response. Most importantly, we found that CpG-ODNs could significantly elevate the infiltration of Th17 cells in tumor mass, which contributed to anti-tumor efficacy of TILs in vivo. Our findings suggested that CpG ODNs could enhance the anti-tumor efficacy of adoptively transferred TILs through modifying Th1 polarization and local infiltration of Th17 cells, which might provide a clue for developing a new strategy for ACT based on TILs.
Collapse
|
13
|
Abstract
Toll-like receptors (TLRs) are part of the innate immune system, and they belong to the pattern recognition receptors (PRR) family. The PRR family is designed to recognize and bind conserved pathogen-associated molecular patterns, which are not generated by the host and are restricted and essential to micro-organisms. TLR9, which recognizes unmethylated CpG (cytosine guanosine dinucleotide), is a very promising target for therapeutic activation. Stimulation of TLR9 activates human plasmacytoid dendritic cells and B cells, and results in potent T helper-1 (T(h)1)-type immune responses and antitumor responses in mouse tumor models and in patients. Several pharmaceutical companies, such as Pfizer, Idera, and Dynavax, are developing CpG oligodeoxynucleotides (ODNs) for the treatment of cancer, along with other conditions, such as infections and allergy. CpG ODNs have shown promising results as vaccine adjuvants and in combination with cancer immunotherapy. Several TLR9 agonists are being developed and have entered clinical trials to evaluate their safety and efficacy for the treatment of several hematopoietic and solid tumors. In this review, we discuss the use of CpG ODNs in several phase I and II clinical trials for the treatment of NHL, renal cell carcinoma, melanoma, and non-small cell lung cancer, either alone or in combination with other agents.
Collapse
Affiliation(s)
- Yanal M Murad
- Duke University Medical Center, Department of Surgery, Program in Molecular Therapeutics, Comprehensive Cancer Center, 401 MSRB, Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
14
|
Toll-like receptors and their role in carcinogenesis and anti-tumor treatment. Cell Mol Biol Lett 2008; 14:248-72. [PMID: 19096763 PMCID: PMC6275910 DOI: 10.2478/s11658-008-0048-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 12/09/2008] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptors (TLRs) have been described as major components of the innate immune system, recognizing the conserved molecular structures found in the large groups of pathogens called pathogen-associated molecular patterns (PAMPs). TLR expression is ubiquitous, from epithelial to immunocompetent cells. TLR ligation triggers several adapter proteins and downstream kinases, leading to the induction of key pro-inflammatory mediators but also anti-inflammatory and anti-tumor cytokines. The result of this activation goes beyond innate immunity to shape the adaptive responses against pathogens and tumor cells, and maintains host homeostasis via cell debris utilization. TLRs have already become potent targets in infectious disease treatment and vaccine therapy and in neoplastic disease treatment, due to their ability to enhance antigen presentation. However, some studies show the dual effect of TLR stimulation on malignant cells: they can be proapoptotic or promote survival under different conditions. It is therefore crucial to design further studies assessing the biology of these receptors in normal and transformed cells. The established role of TLRs in human disease therapy is based on TLR7 and TLR4 agonists, respectively for the novel treatment of some types of skin cancer and for the anti-hepatitis B virus vaccine. Some clinical trials involving TLR agonists as potent enhancers of the anti-tumor response in solid tumors have begun.
Collapse
|