1
|
Zhang Y, Zhan L, Jiang X, Tang X. Comprehensive review for non-coding RNAs: From mechanisms to therapeutic applications. Biochem Pharmacol 2024; 224:116218. [PMID: 38643906 DOI: 10.1016/j.bcp.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Non-coding RNAs (ncRNAs) are an assorted collection of transcripts that are not translated into proteins. Since their discovery, ncRNAs have gained prominence as crucial regulators of various biological functions across diverse cell types and tissues, and their abnormal functioning has been implicated in disease. Notably, extensive research has focused on the relationship between microRNAs (miRNAs) and human cancers, although other types of ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as significant contributors to human disease. In this review, we provide a comprehensive summary of our current knowledge regarding the roles of miRNAs, lncRNAs, and circRNAs in cancer and other major human diseases, particularly cancer, cardiovascular, neurological, and infectious diseases. Moreover, we discuss the potential utilization of ncRNAs as disease biomarkers and as targets for therapeutic interventions.
Collapse
Affiliation(s)
- YanJun Zhang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China.
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Kotnik EN, Mullen MM, Spies NC, Li T, Inkman M, Zhang J, Martins-Rodrigues F, Hagemann IS, McCourt CK, Thaker PH, Hagemann AR, Powell MA, Mutch DG, Khabele D, Longmore GD, Mardis ER, Maher CA, Miller CA, Fuh KC. Genetic characterization of primary and metastatic high-grade serous ovarian cancer tumors reveals distinct features associated with survival. Commun Biol 2023; 6:688. [PMID: 37400526 DOI: 10.1038/s42003-023-05026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 06/07/2023] [Indexed: 07/05/2023] Open
Abstract
High-grade serous ovarian cancer (HGSC) is the most lethal histotype of ovarian cancer and the majority of cases present with metastasis and late-stage disease. Over the last few decades, the overall survival for patients has not significantly improved, and there are limited targeted treatment options. We aimed to better characterize the distinctions between primary and metastatic tumors based on short- or long-term survival. We characterized 39 matched primary and metastatic tumors by whole exome and RNA sequencing. Of these, 23 were short-term (ST) survivors (overall survival (OS) < 3.5 years) and 16 were long-term (LT) survivors (OS > 5 years). We compared somatic mutations, copy number alterations, mutational burden, differential gene expression, immune cell infiltration, and gene fusion predictions between the primary and metastatic tumors and between ST and LT survivor cohorts. There were few differences in RNA expression between paired primary and metastatic tumors, but significant differences between the transcriptomes of LT and ST survivors in both their primary and metastatic tumors. These findings will improve the understanding of the genetic variation in HGSC that exist between patients with different prognoses and better inform treatments by identifying new targets for drug development.
Collapse
Affiliation(s)
- Emilee N Kotnik
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Mary M Mullen
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Nicholas C Spies
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8118, St. Louis, MO, USA
| | - Tiandao Li
- Department of Developmental Biology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8103, St. Louis, MO, USA
| | - Matthew Inkman
- Department of Radiation Oncology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8224, St. Louis, MO, USA
| | - Jin Zhang
- Department of Radiation Oncology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8224, St. Louis, MO, USA
| | - Fernanda Martins-Rodrigues
- Division of Oncology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8069, St. Louis, MO, USA
| | - Ian S Hagemann
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8118, St. Louis, MO, USA
| | - Carolyn K McCourt
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Premal H Thaker
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Andrea R Hagemann
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Matthew A Powell
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - David G Mutch
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Dineo Khabele
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA
| | - Gregory D Longmore
- Division of Oncology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8069, St. Louis, MO, USA
- ICCE Institute, Washington University in St. Louis, 660 S. Euclid Ave CB, 8225, St. Louis, MO, USA
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Childrens Crossroad, Columbus, OH, USA
| | - Christopher A Maher
- Division of Oncology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8069, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, 4444 Forest Park Avenue, CB 8501, St. Louis, MO, USA
- Department of Internal Medicine, Washington University in St. Louis, 660 S. Euclid Ave, MSC 8066-22-6602, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, McKelvey School of Engineering, 1 Brookings Drive, St. Louis, MO, USA
| | - Christopher A Miller
- Division of Oncology, Washington University in St. Louis, 660 S. Euclid Ave CB, 8069, St. Louis, MO, USA
| | - Katherine C Fuh
- Division of Gynecologic Oncology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA.
- Center for Reproductive Health Sciences, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA.
- Department of Obstetrics and Gynecology, Washington University in St. Louis, 660 S. Euclid Ave Mailstop, 8064, St. Louis, MO, USA.
- Department of Obstetrics and Gynecology & Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Ritter A, Hirschfeld M, Berner K, Jaeger M, Grundner-Culemann F, Schlosser P, Asberger J, Weiss D, Noethling C, Mayer S, Erbes T. Discovery of potential serum and urine-based microRNA as minimally-invasive biomarkers for breast and gynecological cancer. Cancer Biomark 2020; 27:225-242. [PMID: 32083575 DOI: 10.3233/cbm-190575] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Deregulated microRNAs (miRNAs) in breast and gynecological cancer might contribute to improve early detection of female malignancies. OBJECTIVE Specification of miRNA types in serum and urine as minimally-invasive biomarkers for breast (BC), endometrial (EC) and ovarian cancer (OC). METHODS In a discovery phase, serum and urine samples from 17 BC, five EC and five OC patients vs. ten healthy controls (CTRL) were analyzed with Agilent human miRNA microarray chip. Selected miRNA types were further investigated by RT-qPCR in serum (31 BC, 13 EC, 15 OC patients, 32 CTRL) and urine (25 BC, 10 EC, 10 OC patients, 30 CTRL) applying two-sample t-tests. RESULTS Several miRNA biomarker candidates exhibited diagnostic features due to distinctive expression levels (serum: 26; urine: 22). Among these, miR-518b, -4719 and -6757-3p were found specifically deregulated in BC serum. Four, non-entity-specific, novel biomarker candidates with unknown functional roles were identified in urine (miR-3973; -4426; -5089-5p and -6841). RT-qPCR identified miR-484/-23a (all p⩽ 0.001) in serum as potential diagnostic markers for EC and OC while miR-23a may also serve as an endogenous control in BC diagnosis. CONCLUSIONS Promising miRNAs as liquid biopsy-based tools in the detection of BC, EC and OC qualified for external validation in larger cohorts.
Collapse
Affiliation(s)
- Andrea Ritter
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Veterinary Medicine, Georg-August-University Goettingen, Goettingen, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Jaeger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Grundner-Culemann
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Jasmin Asberger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniela Weiss
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Noethling
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Mayer
- Department of Gynecology and Obstetrics, Hospital Memmingen, Memmingen, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Abstract
Introduction: Ovarian carcinoma (OC) is the leading cause of death in women with gynecologic cancers. Most patients are diagnosed at an advanced stage with a low five-year survival rate of 20-30%. Discovering novel biomarkers for early detection and outcome prediction of OC is an urgent medical need. miRNAs, a group of small non-coding RNAs, play critical roles in multiple biologic processes and cancer pathogenesis.Areas covered: We provide an in-depth look at the functions of miRNAs in OC, particularly focusing on their roles in chemoresistance and metastasis in OC. We also discuss the biological and clinical significance of miRNAs in exosomes and expand on long non-coding RNA which acts as ceRNA of miRNAs.Expert opinion: miRNAs participate in many biological processes including proliferation, apoptosis, chemoresistance, metastasis, epithelial-mesenchymal transition, and cancer stem cell. They will substantially contribute to our understanding of OC pathogenesis. Given their resistance to the degradation of ribonucleases and availability in plasma exosomes, miRNAs may serve as emerging biomarkers for cancer detection, therapeutic assessment, and prognostic prediction. Being a messenger, exosomal miRNAs are crucial for the crosstalk between cancer cells and stromal cells in tumor microenvironment.
Collapse
Affiliation(s)
- Huilin Zhang
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Bingjian Lu
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
5
|
Gokulnath P, de Cristofaro T, Manipur I, Di Palma T, Soriano AA, Guarracino MR, Zannini M. Long Non-Coding RNA MAGI2-AS3 is a New Player with a Tumor Suppressive Role in High Grade Serous Ovarian Carcinoma. Cancers (Basel) 2019; 11:cancers11122008. [PMID: 31842477 PMCID: PMC6966615 DOI: 10.3390/cancers11122008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022] Open
Abstract
High-Grade Serous Ovarian Carcinoma (HGSC) is the most incidental and lethal subtype of epithelial ovarian cancer (EOC) with a high mortality rate of nearly 65%. Recent findings aimed at understanding the pathogenesis of HGSC have attributed its principal source as the Fallopian Tube (FT). To further comprehend the exact mechanism of carcinogenesis, which is still less known, we performed a transcriptome analysis comparing FT and HGSC. Our study aims at exploring new players involved in the development of HGSC from FT, along with their signaling network, and we chose to focus on non-coding RNAs. Non-coding RNAs (ncRNAs) are increasingly observed to be the major regulators of several cellular processes and could have key functions as biological markers, as well as even a therapeutic approach. The most physiologically relevant and significantly dysregulated non-coding RNAs were identified bioinformatically. After analyzing the trend in HGSC and other cancers, MAGI2-AS3 was observed to be an important player in EOC. We assessed its tumor-suppressive role in EOC by means of various assays. Further, we mapped its signaling pathway using its role as a miRNA sponge to predict the miRNAs binding to MAGI2AS3 and showed it experimentally. We conclude that MAGI2-AS3 acts as a tumor suppressor in EOC, specifically in HGSC by sponging miR-15-5p, miR-374a-5p and miR-374b-5p, and altering downstream signaling of certain mRNAs through a ceRNA network.
Collapse
Affiliation(s)
- Priyanka Gokulnath
- IEOS - Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council, via S. Pansini 5, 80131 Napoli, Italy; (P.G.)
- Dpt. Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Tiziana de Cristofaro
- IEOS - Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council, via S. Pansini 5, 80131 Napoli, Italy; (P.G.)
| | - Ichcha Manipur
- High Performance Computing and Networking Institute, National Research Council, via P. Castellino 111, 80131 Napoli, Italy
| | - Tina Di Palma
- IEOS - Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council, via S. Pansini 5, 80131 Napoli, Italy; (P.G.)
| | - Amata Amy Soriano
- IEOS - Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council, via S. Pansini 5, 80131 Napoli, Italy; (P.G.)
- Present affiliation: IRCCS Casa Sollievo della Sofferenza, Cancer Stem Cells Unit, ISReMIT, 71013 San Giovanni Rotondo FG, Italy
| | - Mario Rosario Guarracino
- Dpt. Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Mariastella Zannini
- IEOS - Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council, via S. Pansini 5, 80131 Napoli, Italy; (P.G.)
- Correspondence:
| |
Collapse
|
6
|
Wu H, Zou Q, He H, Liang Y, Lei M, Zhou Q, Fan D, Shen L. Long non-coding RNA PCAT6 targets miR-204 to modulate the chemoresistance of colorectal cancer cells to 5-fluorouracil-based treatment through HMGA2 signaling. Cancer Med 2019; 8:2484-2495. [PMID: 30938104 PMCID: PMC6536993 DOI: 10.1002/cam4.1809] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is still the third most common cancer in the world with a limited prognosis due to the chemoresistance of CRC cells to 5‐fluorouracil (5‐FU)‐based chemotherapy. In our previous study, we revealed that miR‐204 overexpression could sensitize CRC cell to 5‐FU treatment through targeting HMGA2/PI3K signaling pathway; however, miR‐204 expression in CRC tissues is abnormally downregulated. Long non‐coding RNAs (lncRNAs) dysregulation has been reported in human diseases, including cancer. Also, lncRNA can regulate cancer cell proliferation, invasion, migration, as well as chemoresistance. LncRNA prostate cancer‐associated transcript 6 (PCAT6) acts as an oncogene in many cancers; herein, PCAT6 expression was abnormally upregulated in CRC tissues and cell lines, suggesting its potential role in CRC. Further, we assessed the specific function and mechanism of PCAT6 in CRC. Furthermore, we revealed that PCAT6 knockdown attenuated CRC chemoresistance to 5‐FU through miR‐204/HMGA2/PI3K; miR‐204 inhibition could partially reverse the effect of PCAT6 knockdown. Taken together, we demonstrate that the abnormal PCAT6 overexpression inhibits miR‐204 expression in CRC, thereby promoting HMGA2/PI3K signaling activity, ultimately enhancing the chemoresistance of CRC cells to 5‐FU; PCAT6 represents a promising target for dealing with CRC chemoresistance.
Collapse
Affiliation(s)
- Haijun Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiongyan Zou
- Department of Breast and Thyroid, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong He
- Department of Medical Records Information, The First Hospital of Changsha, Changsha, China
| | - Yu Liang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Mingjun Lei
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Fan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Wang JY, Lu AQ, Chen LJ. LncRNAs in ovarian cancer. Clin Chim Acta 2018; 490:17-27. [PMID: 30553863 DOI: 10.1016/j.cca.2018.12.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/30/2022]
Abstract
Ovarian cancer is one of the most common gynecologic malignancies and has a poor prognosis. Recently, long noncoding RNAs (lncRNAs) have been identified as key regulators of cancer development. Studies have shown that the dysregulation of lncRNAs is frequently observed in ovarian cancer and greatly contributes to malignant phenotypical changes. In this review, we provide perspectives on the involvement of lncRNAs in the proliferation, apoptosis, cell cycle, migration, invasion, metastasis and drug resistance of ovarian cancer based on recent discoveries. Then, we discuss the role of lncRNAs in predicting the prognosis of ovarian cancer. Finally, we provide insight into the potential of lncRNAs for evaluating the diagnosis and prognosis of ovarian cancer.
Collapse
Affiliation(s)
- Jin-Yan Wang
- Department of Obstetrics and Gynecology, Zhangjiagang First People's Hospital, Zhangjiagang 215600, Jiangsu, PR China; Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Ai-Qing Lu
- Zhangjiagang Hospital of Traditional Chinese Medicine, Zhangjiagang 215600, PR China
| | - Li-Juan Chen
- Department of Obstetrics and Gynecology, Zhangjiagang First People's Hospital, Zhangjiagang 215600, Jiangsu, PR China.
| |
Collapse
|
8
|
Chen J, Jia Y, Jia ZH, Zhu Y, Jin YM. Silencing the expression of MTDH increases the radiation sensitivity of SKOV3 ovarian cancer cells and reduces their proliferation and metastasis. Int J Oncol 2018; 53:2180-2190. [PMID: 30226587 DOI: 10.3892/ijo.2018.4541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/12/2018] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer has a high mortality rate among women worldwide. Radiotherapy is considered an effective method of ovarian cancer treatment, however, radioresistance presents a challenge. It is necessary to develop techniques that can increase radiosensitivity in ovarian cancer, and gene therapy is a promising option. The aim of the present study was to investigate the effects of metadherin (MTDH) silencing on the radiosensitivity of ovarian cancer. Ovarian cancer tissues (n=273) and normal ovarian tissues (n=277) were used, as were SKOV3 ovarian cancer cells and the immortalized human ovarian epidermal HOSEpiC cell line. MTT, Transwell and wound-healing assays were performed to assess the proliferation, invasion and migration abilities of the SKOV3 cells. Colony-forming assays and flow cytometry were applied to detect the radiosensitivity and apoptosis of the SKOV3 cells. Nude mouse xenograft models were established to evaluate the effect of MTDH gene silencing on tumor growth and the efficacy of radiotherapy. Ovarian cancer, in tissues and cells, was demonstrated to have a high level of MTDH. Additionally, MTDH silencing was found to significantly inhibit proliferation, migration and invasion, and induce apoptosis in SKOV3 cells, and it was suggested that MTDH depletion significantly increased the sensitivity of the SKOV3 cells to X-ray radiation. MTDH silencing enhanced radiosensitivity and delayed tumor growth in the nude mouse xenograft model. Collectively, the results obtained in the present study suggest the potential role of MTDH silencing as a technique for ameliorating radioresistance in ovarian cancer. The present study provides a promising experimental basis for the improvement of ovarian cancer radiotherapy treatment.
Collapse
Affiliation(s)
- Jun Chen
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yan Jia
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Zan-Hui Jia
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yu Zhu
- Department of Ophthalmology, FAW General Hospital, The Fourth Hospital of Jilin University, Changchun, Jilin 130011, P.R. China
| | - Yue-Mei Jin
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
9
|
Abstract
Objective: Emerging evidence indicates that long non-coding RNAs (lncRNAs) are critical in carcinogenesis and progression of ovarian cancer. This study aimed to explore the functions and molecular mechanisms of plasmacytoma variant translocation I (PVT1) in ovarian cancer Methods: PVT1 and miR-214 were detected by qRT-PCR assays in ovarian cancer tissues and cells. The cell proliferation, migration, and invasion abilities were detected by cell functional experiments, respectively. Western blot assay was performed to detect epithelial-mesenchymal transition (EMT) markers. MiR-214 expression regulated by PVT1 was studied by RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays. Results: The expression of PVT1 was up-regulated in ovarian cancer tissues and cell lines. Elevated PVT1 expression was associated with advanced stage and indicated poor prognosis for ovarian cancer patients. The knockdown of PVT1 impaired SKOV3 cell proliferation, migration, and invasion in vitro. The promotion of ovarian cancer progression by PVT1 involved in regulation of the epithelial-mesenchymal transition process and PVT1 interaction with EZH2 represses miR-214 expression in ovarian cancer cells.
Conclusions: PVT1 plays an important role in ovarian cancer tumorigenesis, which might be as a novel diagnostic marker and therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Ying Chen
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hui Du
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Lewen Bao
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Wenxin Liu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
10
|
Ye B, Hu B, Zheng Z, Zheng R, Shi Y. The long non-coding RNA AK023948 enhances tumor progression in hepatocellular carcinoma. Exp Ther Med 2017; 14:3658-3664. [PMID: 29042961 PMCID: PMC5639403 DOI: 10.3892/etm.2017.5019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/16/2017] [Indexed: 12/28/2022] Open
Abstract
The long non-coding RNAs (lncRNAs) have been demonstrated to play pivotal roles in a broad range of processes including tumor biology. However, the exact contributions of lncRNAs to hepatocellular carcinoma (HCC) remain poorly defined. In current study, we have unraveled a novel function of AK023948 in HCC. We found that AK023948 was substantially upregulated in tumor tissues. Meanwhile, higher AK023948 expression correlated with poor survival. Upregulation of AK023948 expression can promote HepG2 and Hep3B proliferation and invasion in in vitro experiments. Furthermore, AK023948 also decreased tumor growth in vivo. The tumorigenic role of AK023948 was partially ascribed to PI3K/Akt/mTOR signaling and AK023948 knockdown decreased pathway activation and tumor growth. These data collectively suggest an oncogenic role for AK023948 and may provide potential insight into therapeutic intervention.
Collapse
Affiliation(s)
- Bailiang Ye
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bingren Hu
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhihai Zheng
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ru Zheng
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yixiong Shi
- Department of Laparoscopic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
11
|
Liu X, Dai C, Jia G, Xu S, Fu Z, Xu J, Li Q, Ruan H, Xu P. Microarray analysis reveals differentially expressed lncRNAs in benign epithelial ovarian cysts and normal ovaries. Oncol Rep 2017; 38:799-808. [PMID: 28656240 PMCID: PMC5562051 DOI: 10.3892/or.2017.5741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/09/2017] [Indexed: 12/27/2022] Open
Abstract
Recent studies suggest that long non-coding RNAs (lncRNAs) play crucial roles in many types of human malignant cancers. However, the function of lncRNAs in benign tumors remains poorly understood. In the present study, to explored the potential roles of lncRNAs in benign epithelial ovarian cysts (BEOCs) which commonly occur in young women and possess malignant potential, we described the expression profile of the lncRNAs between BEOC and normal ovarian tissues using lncRNA microarray techniques. The results showed that 1,325 transcripts of lncRNAs (1,014 upregulated and 311 downregulated) were differentially expressed in the BEOCs compared with the normal controls [absolute fold-change ≥2, false discovery rate (FDR) <0.05]. We also conducted quantitative real-time PCR (qPCR) to confirm the microarray data. The results of qPCR revealed that the expression trend of 6 randomly selected lncRNAs was consistent with the microarray data. Furthermore, candidate lncRNAs were characterized by pathway analysis and Gene Ontology (GO). The present study is the first to demonstrate different expression profiles of lncRNAs between BEOCs and normal ovarian tissues. These lncRNAs may play a crucial role in the pathological process of BEOCs.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Chencheng Dai
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Genmei Jia
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Sujuan Xu
- Department of Clinical Laboratory, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Ziyi Fu
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Juan Xu
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Qing Li
- Department of Pathology, Shanghai Pudong New Area People's Hospital, Shanghai 201040, P.R. China
| | - Hongjie Ruan
- Department of Gynecology, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| | - Pengfei Xu
- Nanjing Maternal and Child Health Institute, Nanjing Maternal and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210004, P.R. China
| |
Collapse
|
12
|
Wang B, Huang Z, Gao R, Zeng Z, Yang W, Sun Y, Wei W, Wu Z, Yu L, Li Q, Zhang S, Li F, Liu G, Liu B, Leng L, Zhan W, Yu Y, Yang G, Zhou S. Expression of Long Noncoding RNA Urothelial Cancer Associated 1 Promotes Cisplatin Resistance in Cervical Cancer. Cancer Biother Radiopharm 2017; 32:101-110. [PMID: 28414550 DOI: 10.1089/cbr.2016.2156] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Bi Wang
- Department of Gynecology, Maternal and Child Health Hospital of Guiyang City, Guiyang, China
- School of Medical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Zhi Huang
- Department of Interventional Radiology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, China
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Rui Gao
- Guizhou Entry-exit Inspection and Quarantine Bureau, Guiyang, China
| | - Zhu Zeng
- School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Weiming Yang
- Department of Gynecology, Maternal and Child Health Hospital of Guiyang City, Guiyang, China
| | - Yuan Sun
- Department of Gynecology, Maternal and Child Health Hospital of Guiyang City, Guiyang, China
| | - Wei Wei
- Department of Gynecology, Maternal and Child Health Hospital of Guiyang City, Guiyang, China
| | - Zhongqing Wu
- Department of Gynecology, Maternal and Child Health Hospital of Guiyang City, Guiyang, China
| | - Lei Yu
- School of Medical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Qinshan Li
- School of Medical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Shuai Zhang
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Fenghu Li
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - Guoli Liu
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bingjie Liu
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Li Leng
- Department of Pediatrics, The Second Affiliated Hospital of Guiyang College of Traditional Chinese Medicine, Guiyang, China
| | - Wei Zhan
- Department of Pediatrics, The Second Affiliated Hospital of Guiyang College of Traditional Chinese Medicine, Guiyang, China
| | - Yanlong Yu
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guozhen Yang
- School of Medical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Shi Zhou
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|