1
|
Szivos L, Virga J, Mészár Z, Rostás M, Bakó A, Zahuczki G, Hortobágyi T, Klekner Á. Prognostic Role of Invasion-Related Extracellular Matrix Molecules in Diffusely Infiltrating Grade 2 and 3 Astrocytomas. Brain Sci 2024; 14:1157. [PMID: 39595920 PMCID: PMC11592374 DOI: 10.3390/brainsci14111157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Astrocytoma, an IDH-mutant is a common primary brain tumor. Total surgical resection is not feasible due to peritumoral infiltration mediated by extracellular matrix (ECM) molecules. METHODS This study aimed at determining the expression pattern of ECM molecules in different prognostic groups of WHO grade 2 and grade 3 patients and identifying the effect of onco-radiotherapy on tumor cell invasion of grade 3 patients. Gene and protein expression of ECM molecules was determined by qRT-PCR and immunohistochemistry, respectively. RESULTS In the different prognostic groups of grade 2 tumors HMMR, IDH-1, MKI-67, PDGF-A and versican, in grade 3 tumors integrin α-3, and in both groups integrin α-3 and IDH-1 mRNA expression was significantly different. Regarding protein expression, only integrin αV expression changed significantly in the prognostic groups of grade 2 tumors. CONCLUSIONS Based on the invasion spectrum determined by this joint gene and protein expression analysis, there was a sensitivity of 87.5% and a negative predictive value of 88.9% regarding the different prognostic groups of grade 2 astrocytoma. For grade 3 tumors, the applied standard oncotherapeutic modalities apparently lacked significant anti-invasive effects.
Collapse
Affiliation(s)
- László Szivos
- Department of Neurosurgery, University of Debrecen, H-4032 Debrecen, Hungary or (L.S.); (J.V.)
- Department of Neurosurgery, University of Szeged, H-6725 Szeged, Hungary
| | - József Virga
- Department of Neurosurgery, University of Debrecen, H-4032 Debrecen, Hungary or (L.S.); (J.V.)
- Department of Oncology, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Zoltán Mészár
- Department of Anatomy, Histology and Embryology, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Melinda Rostás
- Department of Biochemistry and Molecular Biology, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Andrea Bakó
- Department of Oncology, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Gábor Zahuczki
- UD-GenoMed Medical Genomic Technologies Ltd., H-4032 Debrecen, Hungary;
| | - Tibor Hortobágyi
- Department of Neurology, University of Debrecen, H-4032 Debrecen, Hungary;
- Institute of Neuropathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Álmos Klekner
- Department of Neurosurgery, University of Debrecen, H-4032 Debrecen, Hungary or (L.S.); (J.V.)
| |
Collapse
|
2
|
Nickl V, Ziebolz D, Rumpel C, Klein D, Nickl R, Rampeltshammer E, Monoranu CM, Ernestus RI, Matthies C, Löhr M, Hagemann C, Breun M. Analysis of tumor microenvironment composition in vestibular schwannomas: insights into NF2-associated and sporadic variations and their clinical correlations. Front Oncol 2024; 14:1340184. [PMID: 38817895 PMCID: PMC11137168 DOI: 10.3389/fonc.2024.1340184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/09/2024] [Indexed: 06/01/2024] Open
Abstract
Objective Vestibular schwannomas (VS), benign tumors stemming from the eighth cranial nerve's Schwann cells, are associated with Merlin gene mutations, inflammation, and the tumor microenvironment (TME), influencing tumor initiation, maintenance, and potential neural dysfunction. Understanding TME composition holds promise for systemic therapeutic interventions, particularly for NF2-related schwannomatosis. Methodology A retrospective analysis of paraffin-embedded tissue from 40 patients (2013-2020), evenly divided by neurofibromatosis type 2 status, with further stratification based on magnetic resonance imaging (MRI) progression and hearing function. Immunohistochemistry assessed TME components, including T-cell markers (CD4, CD8, CD25), NK cells (CD7), and macrophages (CD14, CD68, CD163, CCR2). Fiji software facilitated image analysis. Results T-cell markers (CD4, CD8, CD7) exhibited low expression in VS, with no significant NF2-associated vs. sporadic distinctions. Macrophage-related markers (CD14, CD68, CD163, CCR2) showed significantly higher expression (CD14: p = 0.0187, CD68: p < 0.0001, CD163: p = 0.0006, CCR2: p < 0.0001). CCR2 and CD163 significantly differed between NF2-associated and sporadic VS. iNOS, an M1-macrophage marker, was downregulated. CD25, a regulatory T-cell marker, correlated significantly with tumor growth dynamics (p = 0.016). Discussion Immune cells, notably monocytes and macrophages, crucially contribute to VS pathogenesis in both NF2-associated and sporadic cases. Significant differences in CCR2 and CD163 expression suggest distinct immune responses. Regulatory T-cells may serve as growth dynamic markers. These findings highlight immune cells as potential biomarkers and therapeutic targets for managing VS.
Collapse
Affiliation(s)
- Vera Nickl
- Department of Neurosurgery, Section Experimental Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - David Ziebolz
- Department of Neurosurgery, Section Experimental Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Charlotte Rumpel
- Department of Neurosurgery, Section Experimental Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Dennis Klein
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Robert Nickl
- Department of Neurosurgery, Section Experimental Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Eva Rampeltshammer
- Department of Neurosurgery, Section Experimental Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Camelia M. Monoranu
- Institute of Pathology, Department of Neuropathology, University Würzburg, Würzburg, Germany
| | - Ralf-Ingo Ernestus
- Department of Neurosurgery, Section Experimental Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Cordula Matthies
- Department of Neurosurgery, Section Experimental Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Mario Löhr
- Department of Neurosurgery, Section Experimental Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Carsten Hagemann
- Department of Neurosurgery, Section Experimental Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Maria Breun
- Department of Neurosurgery, Section Experimental Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Hutóczki G, Virga J, Birkó Z, Klekner A. Novel Concepts of Glioblastoma Therapy Concerning Its Heterogeneity. Int J Mol Sci 2021; 22:ijms221810005. [PMID: 34576168 PMCID: PMC8470251 DOI: 10.3390/ijms221810005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
Although treatment outcomes of glioblastoma, the most malignant central nervous system (CNS) tumor, has improved in the past decades, it is still incurable, and survival has only slightly improved. Advances in molecular biology and genetics have completely transformed our understanding of glioblastoma. Multiple classifications and different diagnostic methods were made according to novel molecular markers. Discovering tumor heterogeneity only partially explains the ineffectiveness of current anti-proliferative therapies. Dynamic heterogeneity secures resistance to combined oncotherapy. As tumor growth proceeds, new therapy-resistant sub clones emerge. Liquid biopsy is a new and promising diagnostic tool that can step up with the dynamic genetic change. Getting a 'real-time' picture of a specific tumor, anti-invasion and multi-target treatment can be designed. During invasion to the peri-tumoral brain tissue, glioma cells interact with the extracellular matrix components. The expressional levels of these matrix molecules give a characteristic pattern, the invasion spectrum, which possess vast diagnostical, predictive and prognostic information. It is a huge leap forward combating tumor heterogeneity and searching for novel therapies. Using the invasion spectrum of a tumor sample is a novel tool to distinguish between histological subtypes, specifying the tumor grades or different prognostic groups. Moreover, new therapeutic methods and their combinations are under trial. These are crucial steps towards personalized oncotherapy.
Collapse
Affiliation(s)
- Gábor Hutóczki
- Department of Neurosurgery, University of Debrecen, H-4032 Debrecen, Hungary;
- Correspondence:
| | - József Virga
- Department of Oncology, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Zsuzsanna Birkó
- Department of Human Genetics, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Almos Klekner
- Department of Neurosurgery, University of Debrecen, H-4032 Debrecen, Hungary;
| |
Collapse
|