1
|
Emanet M, Lefevre MC, Ceccarelli MC, Battaglini M, Carmignani A, Schiavone F, Marino A, De Pasquale D, Prato M, De Boni F, Petretto A, Bartolucci M, Catalano F, Moscato S, Ciofani G. Polydopamine Nanoparticle-Based Combined Chemotherapy and Photothermal Therapy for the Treatment of Liver Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40695-40713. [PMID: 39058979 PMCID: PMC11310915 DOI: 10.1021/acsami.4c08491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Polydopamine nanoparticles (PDA NPs) are proposed as an anti-cancer tool against hepatocellular carcinoma through the combination of near-infrared (NIR)-mediated hyperthermia and loading with a chemotherapeutic drug, sorafenib (SRF). Cell membranes isolated from a liver cancer cell line (HepG2) have been exploited for the coating of the nanoparticles (thus obtaining CM-SRF-PDA NPs), to promote homotypic targeting toward cancer cells. The selective targeting ability and the combined photothermal and chemotherapeutic activity of the CM-SRF-PDA NPs following NIR irradiation have been evaluated on cell cultures in static and dynamic conditions, besides three-dimensional culture models. Eventually, the therapeutic effectiveness of the proposed approach has also been tested ex ovo on HepG2 spheroid-grafted quail embryos. This comprehensive investigation, supported by proteomic analysis, showed the effectiveness of the proposed nanoplatform and strongly suggests further pre-clinical testing in the treatment of liver cancer.
Collapse
Affiliation(s)
- Melis Emanet
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Marie Celine Lefevre
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Maria Cristina Ceccarelli
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- The
BioRobotics Institute, Scuola Superiore
Sant’Anna, Viale
Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Matteo Battaglini
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Alessio Carmignani
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Francesco Schiavone
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Attilio Marino
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Daniele De Pasquale
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Mirko Prato
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Francesco De Boni
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Andrea Petretto
- Core
Facilities—Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Martina Bartolucci
- Core
Facilities—Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Federico Catalano
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Stefania Moscato
- Department
of Clinical and Experimental Medicine, University
of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Gianni Ciofani
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| |
Collapse
|
2
|
Medina-Ramirez IE, Macias-Diaz JE, Masuoka-Ito D, Zapien JA. Holotomography and atomic force microscopy: a powerful combination to enhance cancer, microbiology and nanotoxicology research. DISCOVER NANO 2024; 19:64. [PMID: 38594446 PMCID: PMC11003950 DOI: 10.1186/s11671-024-04003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/23/2024] [Indexed: 04/11/2024]
Abstract
Modern imaging strategies are paramount to studying living systems such as cells, bacteria, and fungi and their response to pathogens, toxicants, and nanomaterials (NMs) as modulated by exposure and environmental factors. The need to understand the processes and mechanisms of damage, healing, and cell survivability of living systems continues to motivate the development of alternative imaging strategies. Of particular interest is the use of label-free techniques (microscopy procedures that do not require sample staining) that minimize interference of biological processes by foreign marking substances and reduce intense light exposure and potential photo-toxicity effects. This review focuses on the synergic capabilities of atomic force microscopy (AFM) as a well-developed and robust imaging strategy with demonstrated applications to unravel intimate details in biomedical applications, with the label-free, fast, and enduring Holotomographic Microscopy (HTM) strategy. HTM is a technique that combines holography and tomography using a low intensity continuous illumination laser to investigate (quantitatively and non-invasively) cells, microorganisms, and thin tissue by generating three-dimensional (3D) images and monitoring in real-time inner morphological changes. We first review the operating principles that form the basis for the complementary details provided by these techniques regarding the surface and internal information provided by HTM and AFM, which are essential and complimentary for the development of several biomedical areas studying the interaction mechanisms of NMs with living organisms. First, AFM can provide superb resolution on surface morphology and biomechanical characterization. Second, the quantitative phase capabilities of HTM enable superb modeling and quantification of the volume, surface area, protein content, and mass density of the main components of cells and microorganisms, including the morphology of cells in microbiological systems. These capabilities result from directly quantifying refractive index changes without requiring fluorescent markers or chemicals. As such, HTM is ideal for long-term monitoring of living organisms in conditions close to their natural settings. We present a case-based review of the principal uses of both techniques and their essential contributions to nanomedicine and nanotoxicology (study of the harmful effects of NMs in living organisms), emphasizing cancer and infectious disease control. The synergic impact of the sequential use of these complementary strategies provides a clear drive for adopting these techniques as interdependent fundamental tools.
Collapse
Affiliation(s)
- Iliana E Medina-Ramirez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico.
| | - J E Macias-Diaz
- Department of Mathematics and Physics, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - David Masuoka-Ito
- Department of Stomatology, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - Juan Antonio Zapien
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
3
|
Peeters H, van Zwol EM, Brancato L, M C da Cunha MG, Bogers J. Systematic review of the registered clinical trials for oncological hyperthermia treatment. Int J Hyperthermia 2022; 39:806-812. [PMID: 35710344 DOI: 10.1080/02656736.2022.2076292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND The use of heat to treat various diseases is called hyperthermia treatment (HT). Since the 1970s, the anti-cancer effects of HT have been investigated. Different HT techniques can be categorized as local, regional and whole-body hyperthermia treatment (WBHT). We aim to provide a summary of recent research done on HT to treat cancer. METHODS In July 2020 ClinicalTrials.gov were systematically searched for all trials including hyperthermia and cancer registered between 2000 and 2020. Studies were excluded when they did not concern hyperthermal treatment, when they were not oncological studies, when they were observational or other non-interventional studies. RESULTS Of 1654 identified trials, 235 were included. Of these 235 studies, 123 described the use of HIPEC (52.3%), 44 other types of regional HT (18.7%), 45 local HT (19.1%) and 15 WBHT (6.4%). A steady increase (720%) in research to hyperthermic intraperitoneal chemotherapy (HIPEC) can be observed in the last decade. Although HIPEC is the most researched HT modality, an evolution in other HT technologies could be observed during the past decade. CONCLUSIONS Research to HT to treat cancer has expanded fast. Some techniques, for example HIPEC start to be used outside of research context, but overall, more research is needed to establish a clear effect of these HT techniques.
Collapse
Affiliation(s)
| | | | | | | | - J Bogers
- ElmediX NV, Mechelen, Belgium.,Laboratory for Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Valerio-García RC, Medina-Ramírez IE, Arzate-Cardenas MA, Carbajal-Hernández AL. Evaluation of the environmental impact of magnetic nanostructured materials at different trophic levels. Nanotoxicology 2021; 15:257-275. [PMID: 33503388 DOI: 10.1080/17435390.2020.1862335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Safety on the use of magnetic nanomaterials (MNMs) has become an active topic of research given all the recent applications of these materials in various fields. It is known that the toxicity of MNMs depends on size, shape, and surface functionalization. In this study, we evaluate the biocompatibility with different aquatic organisms of engineered MNMs-CIT with excellent aqueous dispersion and long-term colloidal stability. Primary producers (the alga Pseudokirchneriella subcapitata), primary consumers (the rotifer Lecane papuana), and predators (the fish, Danio rerio) interacted with these materials in acute and sub-chronic toxicity tests. Our results indicate that P. subcaptita was the most sensitive taxon to MNMs-CIT. Inhibition of their population growth (IC50 = 22.84 mg L-1) elicited cell malformations and increased the content of photosynthetic pigments, likely due to inhibition of cell division (as demonstrated in AFM analysis). For L. papuana, the acute exposure to MNMs shows no significant mortality. However, adverse effects such as decreased rate of population and altered swimming patterns arise after chronic interaction with MNMs. For D. rerio organisms on early life stages, their exposure to MNMs results in delayed hatching of eggs, diminished survival of larvae, altered energy resources allocation (measured as the content of total carbohydrates, lipids, and protein), and increased glucose demand. As to our knowledge, this is the first study that includes three different trophic levels to assess the effect of MNMs in aquatic organisms; furthermore, we demonstrated that these MNMs pose hazards on aquatic food webs at low concentrations (few mgL-1).
Collapse
Affiliation(s)
| | | | - Mario A Arzate-Cardenas
- Departamento de Química, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Cátedras CONACYT, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | | |
Collapse
|
5
|
Toxicologic Evaluation for Amorphous Silica Nanoparticles: Genotoxic and Non-Genotoxic Tumor-Promoting Potential. Pharmaceutics 2020; 12:pharmaceutics12090826. [PMID: 32872498 PMCID: PMC7559769 DOI: 10.3390/pharmaceutics12090826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 11/17/2022] Open
Abstract
Amorphous silica nanoparticles (SiO2NPs) have been widely used in medicine including targeted drug/DNA delivery, cancer therapy, and enzyme immobilization. Nevertheless, SiO2NPs should be used with caution due to safety concerns associated with unique physical and chemical characteristics. The objective of this study was to determine the effects of SiO2NPs on genotoxic and non-genotoxic mechanisms associated with abnormal gap junctional intercellular communication (GJIC) in multistage carcinogenesis. The SiO2NPs exhibited negative responses in standard genotoxicity tests including the Ames test, chromosome aberration assay, and micronucleus assay. In contrast, the SiO2NPs significantly induced DNA breakage in comet assay. Meanwhile, SiO2NPs inhibited GJIC based on the results of scrape/loading dye transfer assay for the identification of non-genotoxic tumor-promoting potential. The reduction in expression and plasma membrane localization of Cx43 was detected following SiO2NP treatment. Particularly, SiO2NP treatment increased Cx43 phosphorylation state, which was significantly attenuated by inhibitors of extracellular signal-regulated kinases 1/2 (ERK1/2) and threonine and tyrosine kinase (MEK), but not by protein kinase C (PKC) inhibitor. Taken together, in addition to a significant increase in DNA breakage, SiO2NP treatment resulted in GJIC dysregulation involved in Cx43 phosphorylation through the activation of mitogen-activated protein kinase (MAPK) signaling. Overall findings of the genotoxic and non-genotoxic carcinogenic potential of SiO2NPs provide useful toxicological information for clinical application at an appropriate dose.
Collapse
|