1
|
Yin Z, Huang Y, Zhu Y, Zhong Q, Shen H, Mahati S, Huang J, Li G, Ou R, Liu Z, Zhang Q, Liu S. Identification and analysis of microplastic aggregation in CAR-T cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136351. [PMID: 39488976 DOI: 10.1016/j.jhazmat.2024.136351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Microplastics (MPs) are increasingly recognized as contaminants present in various environments and are widely acknowledged as potential hazards to the mammalian immune system. In our study of chimeric antigen receptor T cell (CAR-T) therapy, we observed the presence of MP in CAR-T cell products for the first time. It is worth exploring whether MP could enter CAR-T cells and how they might affect CAR-T cells' functionality. Therefore, we analyzed how MP affected CD19 and BCMA-CAR-T cells. Based on flow cytometry, ELISA, and cytotoxicity analysis of in vitro and in vivo experiments, MP suppressed the activity of CAR-T cells. Subsequent investigation revealed that the exposure of CAR-T cells to varying concentrations of MP resulted in a notable increase in apoptosis, ferroptosis, and exhaustion levels. Furthermore, the hyperactivation of the mTOR signaling pathway in MP-treated CAR-T cells was verified. The partial restoration of CAR-T cell function in MP was achieved by inhibiting the mTOR pathway. MP present a threat to CAR-T cell function due to their role in inducing CAR-T cell apoptosis, ferroptosis, and T-cell exhaustion through the hyperactivation of mTOR signaling pathways.
Collapse
Affiliation(s)
- Zhao Yin
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan university, Guangzhou, Guangdong Province 510317, China.
| | - Yizhen Huang
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan university, Guangzhou, Guangdong Province 510317, China
| | - Yangmin Zhu
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan university, Guangzhou, Guangdong Province 510317, China
| | - Qi Zhong
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan university, Guangzhou, Guangdong Province 510317, China
| | - Huijuan Shen
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan university, Guangzhou, Guangdong Province 510317, China
| | - Shaya Mahati
- Department of Tumor center, First Affiliated Hospital of Xinjiang Medical University, State key laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Centra Asia, Xinjiang Province 830054, China
| | - Jing Huang
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan university, Guangzhou, Guangdong Province 510317, China
| | - Guangchao Li
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan university, Guangzhou, Guangdong Province 510317, China
| | - Ruiming Ou
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan university, Guangzhou, Guangdong Province 510317, China.
| | - Zhi Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan university, Guangzhou, Guangdong Province 510317, China.
| | - Qing Zhang
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan university, Guangzhou, Guangdong Province 510317, China.
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Jinan university, Guangzhou, Guangdong Province 510317, China.
| |
Collapse
|
2
|
Wang M, Jia L, Dai X, Zhang X. Advanced strategies in improving the immunotherapeutic effect of CAR-T cell therapy. Mol Oncol 2024; 18:1821-1848. [PMID: 38456710 PMCID: PMC11306536 DOI: 10.1002/1878-0261.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/23/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
Chimeric antigen receptor (CAR-T) cell therapy is a newly developed immunotherapy strategy and has achieved satisfactory outcomes in the treatment of hematological malignancies. However, some adverse effects related to CAR-T cell therapy have to be resolved before it is widely used in clinics as a cancer treatment. Furthermore, the application of CAR-T cell therapy in the treatment of solid tumors has been hampered by numerous limitations. Therefore, it is essential to explore novel strategies to improve the therapeutic effect of CAR-T cell therapy. In this review, we summarized the recently developed strategies aimed at optimizing the generation of CAR-T cells and improving the anti-tumor efficiency of CAR-T cell therapy. Furthermore, the discovery of new targets for CAR-T cell therapy and the combined treatment strategies of CAR-T cell therapy with chemotherapy, radiotherapy, cancer vaccines and nanomaterials are highlighted.
Collapse
Affiliation(s)
- Minmin Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationFirst Hospital of Jilin UniversityChangchunChina
- National‐Local Joint Engineering Laboratory of Animal Models for Human DiseaseFirst Hospital of Jilin UniversityChangchunChina
| | - Linzi Jia
- Department of General MedicineShanxi Province Cancer HospitalTaiyuanChina
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationFirst Hospital of Jilin UniversityChangchunChina
- National‐Local Joint Engineering Laboratory of Animal Models for Human DiseaseFirst Hospital of Jilin UniversityChangchunChina
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of EducationFirst Hospital of Jilin UniversityChangchunChina
- National‐Local Joint Engineering Laboratory of Animal Models for Human DiseaseFirst Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
3
|
Poojary R, Song AF, Song BS, Song CS, Wang L, Song J. Investigating chimeric antigen receptor T cell therapy and the potential for cancer immunotherapy (Review). Mol Clin Oncol 2023; 19:95. [PMID: 37920415 PMCID: PMC10619195 DOI: 10.3892/mco.2023.2691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/15/2023] [Indexed: 11/04/2023] Open
Abstract
Immunotherapy has emerged as a crucial treatment option, particularly for types of cancer that display resistance to conventional therapies. A remarkable breakthrough in this field is the development of chimeric antigen receptor (CAR) T cell therapy. CAR T cells are generated by engineering the T cells of a patient to express receptors that can recognize specific tumor antigens. This groundbreaking approach has demonstrated impressive outcomes in hematologic malignancies, including diffuse large B cell lymphoma, B cell acute lymphoblastic leukemia and multiple myeloma. Despite these significant successes, CAR T cell therapy has encountered challenges in its application against solid tumors, leading to limited success in these cases. Consequently, researchers are actively exploring novel strategies to enhance the efficacy of CAR T cells. The focus lies on augmenting CAR T cell trafficking to tumors while preventing the development of CAR T cell exhaustion and dysfunction. The present review aimed to provide a comprehensive analysis of the achievements and limitations of CAR T cell therapy in the context of cancer treatment. By understanding both the successes and hurdles, further advancements in this promising area of research can be developed. Overall, immunotherapy, particularly CAR T cell therapy, has opened up novel possibilities for cancer treatment, offering hope to patients with previously untreatable malignancies. However, to fully realize its potential, ongoing research and innovative strategies are essential in overcoming the challenges posed by solid tumors and maximizing CAR T cell efficacy in clinical settings.
Collapse
Affiliation(s)
- Rayansh Poojary
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807-3260, USA
| | - Andy Fang Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807-3260, USA
| | - Benny Shone Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807-3260, USA
| | - Carly Shaw Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807-3260, USA
| | - Liqing Wang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807-3260, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807-3260, USA
| |
Collapse
|
4
|
Dabas P, Danda A. Revolutionizing cancer treatment: a comprehensive review of CAR-T cell therapy. Med Oncol 2023; 40:275. [PMID: 37608202 DOI: 10.1007/s12032-023-02146-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a promising new treatment for cancer that involves genetically modifying a patient's T-cells to recognize and attack cancer cells. This review provides an overview of the latest discoveries and clinical trials related to CAR-T cell therapy, as well as the concept and applications of the therapy. The review also discusses the limitations and potential side effects of CAR-T cell therapy, including the high cost and the risk of cytokine release syndrome and neurotoxicity. While CAR-T cell therapy has shown promising results in the treatment of hematologic malignancies, ongoing research is needed to improve the efficacy and safety of the therapy and expand its use to solid tumors. With continued research and development, CAR-T cell therapy has the potential to revolutionize cancer treatment and improve outcomes for patients with cancer.
Collapse
Affiliation(s)
- Preeti Dabas
- St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Adithi Danda
- St Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
5
|
Fu S, Hu Y, Huang H. Long-term efficacy of CAR-T cell therapy for patients with relapsed/refractory B cell non-Hodgkin lymphoma. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:167-174. [PMID: 36161292 PMCID: PMC9353625 DOI: 10.3724/zdxbyxb-2022-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/09/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To evaluate the long-term efficacy of chimeric antigen receptor (CAR) T cell therapy in treatment of relapsed/refractory B cell non-Hodgkin lymphoma (B-NHL). METHODS Clinical data of 27 patients with relapsed/refractory B-NHL treated with CAR-T cell in Bone Marrow Transplantation Center, the First Affiliated Hospital of Zhejiang University School of Medicine from June 2016 to June 2020 were analyzed. Patients were followed up to February 1, 2022. The overall survival rate, progression free survival (PFS) rate were evaluated by Kaplan-Meier analysis, and the adverse reactions were recorded. RESULTS The median follow-up time of 27 patients was 32 (1, 56) months. The total response rate was 85.2% (23/27), the complete response rate was 63.0% (17/27), and the partial response rate was 22.2% (6/27). The 3-year overall survival rate was (50.0±10.1)%, and the PFS rate was (44.4±9.6)%. After CAR-T cell therapy, the overall survival and PFS of patients in the complete response group were significantly better than those in the non-complete response group [overall survival rate: (66.9±12.7)% vs. (20.0±12.6)%, P=0.01; PFS rate: (64.7±11.6)% vs. (10.0±9.5)%, P<0.01]. There was no significant difference in overall survival rate and PFS rate between CD19 targeted and CD19/CD22 dual-targeted CAR-T cell therapy (both P>0.05). Cytokine release syndrome developed in 92.6% (25/27) of patients, and 88.9% (24/27) of patients had grade Ⅲ-Ⅳ myelosuppression. Other adverse reactions include immune effector cell-associated neurotoxicity syndrome, hepatitis B virus activation, and lung or gastrointestinal infections. No long-term adverse reactions occurred. CONCLUSIONS CAR-T cell therapy is effective for patients with relapsed/refractory B-NHL, and the adverse reactions are controllable. The patients who obtain complete response after CAR-T cell therapy or survive for one year after therapy may have better long-term survival.
Collapse
Affiliation(s)
- Shan Fu
- 1. Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- 2. Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- 3. Institute of Hematology, Zhejiang University, Hangzhou 310058, China
- 4. Zhejiang Provincial Laboratory for Stem Cell and Immune Therapy, Hangzhou 310058, China
| | - Yongxian Hu
- 1. Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- 2. Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- 3. Institute of Hematology, Zhejiang University, Hangzhou 310058, China
- 4. Zhejiang Provincial Laboratory for Stem Cell and Immune Therapy, Hangzhou 310058, China
| | - He Huang
- 1. Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- 2. Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- 3. Institute of Hematology, Zhejiang University, Hangzhou 310058, China
- 4. Zhejiang Provincial Laboratory for Stem Cell and Immune Therapy, Hangzhou 310058, China
| |
Collapse
|