Benzylpyrazinium Salts as Photo-Initiators in the Polymerization of Epoxide Monomers.
MATERIALS 2014;
7:5581-5590. [PMID:
28788147 PMCID:
PMC5456198 DOI:
10.3390/ma7085581]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 11/17/2022]
Abstract
In order to study the capability of pyrazinium salt derivatives to act as photo-initiators of epoxide monomers, benzyl pyrazinium hexafluoroantimonate (BPH), benzyl 3,5-dimethyl pyrazine hexafluoroantimonate (BDH) and benzyl quinoxalinium hexafluoroantimonate (BQH) were synthesized by the Menschutkin reaction of benzyl bromide with pyrazine, 2,6-dimethyl pyrazine, and quinoxaline, followed by exchanging with hexafluoroantimonate (SbF6). BPH, BDH, and BQH exhibited characteristic ultraviolet (UV) absorbance as well as exothermic peaks as a function of irradiation time in a differential photo-calorimeter (DPC). In the absence of photo-irradiation, cyclohexene oxide (CHO) underwent slow polymerization at 25 °C using BPH derivatives, but quantitative conversion was achieved even after a 5-min photo-irradiation. In addition, photo-irradiation was required for the photo-polymerization of CHO and styrene oxide (STO), which was characterized by a short induction period followed by a very rapid and exothermic polymerization. While glycidyl methyl ether (GME) required long induction periods, glycidyl phenyl ether (GPE) underwent rather slow and/or no photo-polymerization. The reactivity order of the monomers was CHO > STO >> GME >>> GPE, and the reactivity order for the photo-polymerization of CHO was BPH > BQH > BDH. It was found that BPH, BDH, and BQH could serve as photo-latent initiators for CHO, STO and GME, respectively.
Collapse