1
|
Li S, Jiang Z, Wei S. Interaction of heavy metals and polycyclic aromatic hydrocarbons in soil-crop systems: The effects and mechanisms. ENVIRONMENTAL RESEARCH 2024; 263:120035. [PMID: 39313170 DOI: 10.1016/j.envres.2024.120035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
In natural environments, the removal and degradation of two major pollutants, heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs), are explored through targeted experimental investigations. However, these endeavors reveal that outcomes in situ may significantly diverge from the idealized effects observed in laboratory settings due to the complex interaction between HMs and PAHs, underscoring a pressing need for thorough research into their mutual impacts. This review examines the origins and migratory pathways of compound pollution stemming from HMs and PAHs. Concurrently, it provides an overview of the farmland ecosystem's response to combined HMs-PAHs pollution. This encompassed the assessments of changes in the soil's physical and chemical properties, the intricacies of the migration and transformation processes of the combined pollution within plants, and the consequential impact on the physiological functions of soil microorganisms. The varying concentration ratios of HMs and PAHs can modulate the permeability of plant root cell membranes, thereby influencing the translocation of these substances within the plant via symplastic and apoplastic pathways. Recent research has uncovered the mechanisms underlying cation-π interactions between HMs and PAHs. This review aims to offer a comprehensive overview of the current state of HMs-PAHs co-pollution, offering both qualitative and quantitative insights into their interaction patterns within the farmland ecosystem. The ultimate goal is to establish a robust theoretical foundation to support the in-situ remediation of these pollutants in agricultural practices and to provide a theoretical basis for soil health management in agricultural production.
Collapse
Affiliation(s)
- Shijing Li
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, 400715, China
| | - Zhenmao Jiang
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, 400715, China
| | - Shiqiang Wei
- College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Kerdsomboon K, Techo T, Mhuantong W, Limcharoensuk T, Luangkamchorn ST, Laoburin P, Auesukaree C. Genomic and transcriptomic analyses reveal insights into cadmium resistance mechanisms of Cupriavidus nantongensis strain E324. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175915. [PMID: 39216765 DOI: 10.1016/j.scitotenv.2024.175915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The cadmium-resistant Cupriavidus sp. strain E324 has been previously shown to have a high potential for use in cadmium (Cd) remediation, due to its high capacity for cadmium bioaccumulation. According to the comparative genomic analysis, the strain E324 was most closely related to C. nantongensis X1T, indicating that the strain E324 should be re-identified as C. nantongensis. To unravel the Cd tolerance mechanisms of C. nantongensis strain E324, the transcriptional response of this strain to acute Cd exposure was assessed using RNA-seq-based transcriptome analysis, followed by validation through qRT-PCR. The results showed that the upregulated Differentially Expressed Genes (DEGs) were significantly enriched in categories related to metal binding and transport, phosphate transport, and oxidative stress response. Consistently, we observed significant increases in both the cell wall and intracellular contents of certain essential metals (Cu, Fe, Mn, and Zn) upon Cd exposure. Among these, only the Zn pretreatment resulting in high Zn accumulation in the cell walls could enhance bacterial growth under Cd stress conditions through its role in inhibiting Cd accumulation. Additionally, the promotion of catalase activity and glutathione metabolism upon Cd exposure to cope with Cd-induced oxidative stress was demonstrated. Meanwhile, the upregulation of phosphate transport-related genes upon Cd treatment seems to be the bacterial response to Cd-induced phosphate depletion. Altogether, our findings suggest that these adaptive responses are critical mechanisms contributing to increased Cd tolerance in C. nantongensis strain E324 via the enhancement of metal-chelating and antioxidant capacities of the cells.
Collapse
Affiliation(s)
- Kittikhun Kerdsomboon
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand; Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Todsapol Techo
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani 12120, Thailand
| | - Tossapol Limcharoensuk
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Supinda Tatip Luangkamchorn
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Analytical Sciences and National Doping Test Institute, Mahidol University, Bangkok 10400, Thailand
| | - Patcharee Laoburin
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Choowong Auesukaree
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
3
|
Song H, Chen WJ, Chen SF, Zhu X, Mishra S, Ghorab MA, Bhatt P, Chen S. Removal of chlorimuron-ethyl from the environment: The significance of microbial degradation and its molecular mechanism. CHEMOSPHERE 2024; 366:143456. [PMID: 39393587 DOI: 10.1016/j.chemosphere.2024.143456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/25/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
Chlorimuron-ethyl is a selective pre- and post-emergence herbicide, which is widely used to control broad-leaved weeds in soybean fields. However, herbicide residues have also increased as a result of the pervasive use of chlorimuron-ethyl, which has become a significant environmental concern. Consequently, the removal of chlorimuron-ethyl residues from the environment has garnered significant attention in recent decades. A variety of technologies have been developed to address this issue, including adsorption, aqueous chlorination, photodegradation, Fenton, photo-Fenton, ozonation, and biodegradation. After extensive studies, the biodegradation of chlorimuron-ethyl by microorganisms has now been recognized as an efficient and environmentally friendly degradation process. As research has progressed, a number of microbial strains associated with chlorimuron-ethyl degradation have been identified, such as Pseudomonas sp., Klebsiella sp., Rhodococcus sp., Stenotrophomonas sp., Aspergillus sp., Hansschlegelia sp., and Enterobacter sp. In addition, the enzymes and genes responsible for chlorimuron-ethyl biodegradation are also being investigated. These degradation genes include sulE, pnbA, carE, gst, Kj-CysJ, Kj-eitD-2267, Kj-kdpD-226, Kj-dxs-398, Kj-mhpC-2096, and Kj-mhpC-2289, among others. The degradation enzymes associated with chlorimuron-ethyl biodegradation includes esterases (SulE, PnbA, and E3), carboxylesterase (CarE), Cytochrome P450, flavin monooxygenase (FMO), and glutathione-S-transferase (GST). Regrettably, few reviews have focused on the microbial degradation and molecular mechanisms of chlorimuron-ethyl. Therefore, this review covers the microbial degradation of chlorimuron-ethyl and its degradation pathways, the molecular mechanism of the microbial degradation of chlorimuron-ethyl, and the outlook on the practical application of the microbial degradation of sulfonylurea herbicides are all covered in this review's overview of previous studies into the degradation of chlorimuron-ethyl.
Collapse
Affiliation(s)
- Haoran Song
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Juan Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shao-Fang Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Xixian Zhu
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute (NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Mohamed A Ghorab
- Wildlife Toxicology Lab, Department of Animal Science, Institute for Integrative Toxicology (IIT), Michigan State University, East Lansing, MI, 48824, USA
| | - Pankaj Bhatt
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Kalendar R, Levei E, Cadar O, Senila M. Editorial: Trends and challenges in plant biomonitoring, bioremediation and biomining. FRONTIERS IN PLANT SCIENCE 2024; 15:1486752. [PMID: 39372853 PMCID: PMC11449863 DOI: 10.3389/fpls.2024.1486752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Affiliation(s)
- Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, University of Helsinki, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Erika Levei
- Research Institute for Analytical Instrumentation, National Institute of Research and Development for Optoelectronics (INOE2000), Cluj-Napoca, Romania
| | - Oana Cadar
- Research Institute for Analytical Instrumentation, National Institute of Research and Development for Optoelectronics (INOE2000), Cluj-Napoca, Romania
| | - Marin Senila
- Research Institute for Analytical Instrumentation, National Institute of Research and Development for Optoelectronics (INOE2000), Cluj-Napoca, Romania
| |
Collapse
|
5
|
Wu ZH, Li F, Wang F, Jin R, Li Y, Li S, Zhou Z, Jia P, Li JT. A synthetic bacterial consortium improved the phytoremediation efficiency of ryegrass on polymetallic contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116691. [PMID: 38981391 DOI: 10.1016/j.ecoenv.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Polymetallic contamination of soils caused by mining activities seriously threatens soil fertility, biodiversity and human health. Bioremediation is thought to be of low cost and has minimal environmental risk but its effectiveness needs to be improved. This study aimed to identify the combined effect of plant growth and microbial strains with different functions on the enhancement of bioremediation of polymetallic contaminated soil. The microbiological mechanism of bioremediation was explored by amplicon sequencing and gene prediction. Soil was collected from polymetallic mine wastelands and a non-contaminated site for use in a pot experiment. Remediation efficiency of this method was evaluated by planting ryegrass and applying a mixed bacterial consortium comprising P-solubilizing, N-fixing and SO4-reducing bacteria. The plant-microbe joint remediation method significantly enhanced the above-ground biomass of ryegrass and soil nutrient contents, and at the same time reduced the content of heavy metals in the plant shoots and soil. The application of the composite bacterial inoculum significantly affected the structure of soil bacterial communities and increased the bacterial diversity and complexity, and the stability of co-occurrence networks. The relative abundance of the multifunctional genera to which the strains belonged showed a significant positive correlation with the soil nutrient content. Genera related to carbon (C), nitrogen (N), phosphorus (P), and sulphur (S) cycling and heavy metal resistance showed an up-regulation trend in heavy metal-contaminated soils after the application of the mixed bacterial consortium. Also, bacterial strains with specific functions in the mixed consortium regulated the expression of genes involved in soil nutrient cycling, and thus assisted in making the soil self-sustainable after remediation. These results suggested that the remediation of heavy metal-contaminated soil needs to give priority to the use of multifunctional bacterial agents.
Collapse
Affiliation(s)
- Zhuo-Hui Wu
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Fenglin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Feifan Wang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Rongzhou Jin
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Yanying Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Shilin Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Zhuang Zhou
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Pu Jia
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| | - Jin-Tian Li
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| |
Collapse
|
6
|
Zhang J, Zhang S, Bian X, Yin Y, Huang W, Liu C, Liang X, Li F. High Efficiency Removal Performance of Tetracycline by Magnetic CoFe 2O 4/NaBiO 3 Photocatalytic Synergistic Persulfate Technology. Molecules 2024; 29:4055. [PMID: 39274903 PMCID: PMC11397110 DOI: 10.3390/molecules29174055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
The widespread environmental contamination resulting from the misuse of tetracycline antibiotics (TCs) has garnered significant attention and study by scholars. Photocatalytic technology is one of the environmentally friendly advanced oxidation processes (AOPs) that can effectively solve the problem of residue of TCs in the water environment. This study involved the synthesis of the heterogeneous magnetic photocatalytic material of CoFe2O4/NaBiO3 via the solvothermal method, and it was characterized using different characterization techniques. Then, the photocatalytic system under visible light (Vis) was coupled with peroxymonosulfate (PMS) to explore the performance and mechanism of degradation of tetracycline hydrochloride (TCH) in the wastewater. The characterization results revealed that CoFe2O4/NaBiO3 effectively alleviated the agglomeration phenomenon of CoFe2O4 particles, increased the specific surface area, effectively narrowed the band gap, expanded the visible light absorption spectrum, and inhibited recombination of photogenerated electron-hole pairs. In the Vis+CoFe2O4/NaBiO3+PMS system, CoFe2O4/NaBiO3 effectively activated PMS to produce hydroxyl radicals (·OH) and sulfate radicals (SO4-). Under the conditions of a TCH concentration of 10 mg/L-1, a catalyst concentration of 1 g/L-1 and a PMS concentration of 100 mg/L-1, the degradation efficiency of TCH reached 94% after 100 min illumination. The degradation of TCH was enhanced with the increase in the CoFe2O4/NaBiO3 and PMS dosage. The solution pH and organic matter had a significant impact on TCH degradation. Notably, the TCH degradation efficiency decreased inversely with increasing values of these parameters. The quenching experiments indicated that the free radicals contributing to the Vis+CoFe2O4/NaBiO3+PMS system were ·OH followed by SO4-, hole (h+), and the superoxide radical (O2-). The main mechanism of PMS was based on the cycle of Co3+ and Co2+, as well as Fe3+ and Fe2+. The cyclic tests and characterization by XRD and FT-IR revealed that CoFe2O4/NaBiO3 had good degradation stability. The experimental findings can serve as a reference for the complete removal of antibiotics from wastewater.
Collapse
Affiliation(s)
- Juanxiang Zhang
- College of Water Resources and Architectural Engineering, Tarim University, Alaer 843300, China
| | - Shengnan Zhang
- College of Water Resources and Architectural Engineering, Tarim University, Alaer 843300, China
| | - Xiuqi Bian
- College of Water Resources and Architectural Engineering, Tarim University, Alaer 843300, China
- College of Architecture Engineering, Shandong Vocational and Technical University of Engineering, Jinan 250200, China
| | - Yaoshan Yin
- College of Water Resources and Architectural Engineering, Tarim University, Alaer 843300, China
| | - Weixiong Huang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Chong Liu
- Department of Chemical & Materials Engineering, University of Auckland, Auckland 0926, New Zealand
| | - Xinqiang Liang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fayong Li
- College of Water Resources and Architectural Engineering, Tarim University, Alaer 843300, China
| |
Collapse
|
7
|
Liu ZS, Wang KH, Han Q, Jiang CY, Liu SJ, Li DF. Sphingobium sp. SJ10-10 encodes a not-yet-reported chromate reductase and the classical Rieske dioxygenases to simultaneously degrade PAH and reduce chromate. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134889. [PMID: 38878436 DOI: 10.1016/j.jhazmat.2024.134889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Both polycyclic aromatic hydrocarbons (PAHs) and heavy metals persist in the environment and are toxic to organisms. Their co-occurrence makes any of them difficult to remove during bioremediation and poses challenges to environmental management and public health. Microorganisms capable of effectively degrading PAHs and detoxifying heavy metals concurrently are required to improve the bioremediation process. In this study, we isolated a new strain, Sphingobium sp. SJ10-10, from an abandoned coking plant and demonstrated its capability to simultaneously degrade 92.6 % of 75 mg/L phenanthrene and reduce 90 % of 3.5 mg/L hexavalent chromium [Cr(VI)] within 1.5 days. Strain SJ10-10 encodes Rieske non-heme iron ring-hydroxylating oxygenases (RHOs) to initiate PAH degradation. Additionally, a not-yet-reported protein referred to as Sphingobium chromate reductase (SchR), with low sequence identity to known chromate reductases, was identified to reduce Cr(VI). SchR is distributed across different genera and can be classified into two classes: one from Sphingobium members and the other from non-Sphingobium species. The widespread presence of SchR in those RHO-containing Sphingobium members suggests that they are excellent candidates for bioremediation. In summary, our study demonstrates the simultaneous removal of PAHs and Cr(VI) by strain SJ10-10 and provides valuable insights into microbial strategies for managing complex pollutant mixtures.
Collapse
Affiliation(s)
- Ze-Shen Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke-Huan Wang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qun Han
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - De-Feng Li
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Anemana TA, Buri M, Tay C. Iodide- and electrochemical assisted removal of mercury by Cirsium arvense from gold tailings in the Amansie West District, Ghana. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2266-2277. [PMID: 39120257 DOI: 10.1080/15226514.2024.2386302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Mercury (Hg) pollution in Ghana through mining has become a serious environmental challenge. This study investigates the potential of Cirsium arvense to photostabilize Hg using electrokinetic current with or without an iodide solution in gold mine tailings heavily contaminated through mining activities in southern Ghana. An initial Hg concentration of 9.60 mg/kg using cold vapor atomic absorption spectrometry (CVAAS) was determined. The biological absorption coefficient, bioconcentration factor, and translocation factor of Hg have been presented. Cirsium arvense therefore had a higher bioconcentration factor (BCF) of 2.6-5.15 mg/kg, and a transfer factor (TF) of 0.24-0.36 indicating a higher efficiency for phytostabilization. Both the rate and time of extractions of Hg from the tailings by Cirsium arvense are efficiently improved in the combined electric current and iodide treatment. Plant and electric current combined treatment and plant and iodide combined treatment had only 60 and 50% phytostabilization rates, respectively. The combined plant, iodide, and electric current treatment has proven to be superior with about >90% Hg removal rate. Therefore, the combined plant, iodide, and electric current treatment resulted in a higher Hg removal efficiency by Cirsium arvense in a shorter period due to higher solubilization rate and electromigration effects on Hg species.
Collapse
Affiliation(s)
| | - Mohammed Buri
- Council for Scientific and Industrial Research-Soil Research Institute, Kumasi, Ghana
| | - Collins Tay
- Council for Scientific and Industrial Research-Soil Research Institute, Kumasi, Ghana
| |
Collapse
|
9
|
Banaei A, Saadat A, Javadi R, Pargolghasemi P. Preparation magnetic graphene oxide/diethylenetriamine composite for removal of methylene blue from aqueous solutions. Sci Rep 2024; 14:15457. [PMID: 38965355 PMCID: PMC11224226 DOI: 10.1038/s41598-024-65628-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
Graphene oxide (GO) and its derivatives have several applications in many areas such as environmental and energy materials, water treatment and biomedical technologies. Because of having various polar groups on its surface, GO is considered as an excellent adsorbent. However, for many applications such as adsorption of pollution from aqueous solutions, chemical functionalization of graphene oxide is often a necessary requirement. In the present study, a new composite from graphene oxide, diethylenetriamine (DETA) and silica coated MnFe2O4 nanoparticles (GO/DETA/MnFe2O4@SiO2) was prepared. The structure, thermal stability and magnetic properties of the composite were studied by FT-IR, XRD, SEM, EDS, VSM and TGA spectroscopic methods. The prepared composite showed magnetic property with a saturation magnetization of 3.0 emu/g. The adsorption properties of GO/DETA/MnFe2O4@SiO2 composite for methylene blue (MB) in aqueous solution were studied using batch method. The effects of important parameters on the surface adsorption process of MB, including pH, contact time, adsorbent dosage and initial dye concentration were investigated. The adsorption isotherm was in accordance with Langmuir model showing surface homogeneity of the adsorbent. According to the Langmuir analysis, the maximum adsorption capacity (qm) of GO/DETA/MnFe2O4@SiO2 composite for MB was found to be 243.91 mg/g. The kinetic studies showed that the adsorption was pseudo first-order process. In addition, the thermodynamic studies indicated the adsorption was spontaneous and endothermic process.
Collapse
Affiliation(s)
- Alireza Banaei
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| | - Afshin Saadat
- Department of Chemistry, Germi Branch, Islamic Azad University, Germi, Iran.
| | - Roghayyeh Javadi
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
| | | |
Collapse
|
10
|
Abdoli M, Khaledian S, Mavaei M, Hajmomeni P, Ghowsi M, Qalekhani F, Nemati H, Fattahi A, Sadrjavadi K. Centaurea behen leaf extract mediated green synthesized silver nanoparticles as antibacterial and removing agent of environmental pollutants with blood compatible and hemostatic effects. Sci Rep 2024; 14:13941. [PMID: 38886391 PMCID: PMC11183110 DOI: 10.1038/s41598-024-64468-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
The present study focused on evaluating the antibacterial properties, radical scavenging, and photocatalytic activities of Centaurea behen-mediated silver nanoparticles (Cb-AgNPs). The formation of Cb-AgNPs was approved by UV-Vis spectrometry, Fourier-transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy (SEM), energy dispersive X-ray and X-ray diffraction. The results showed that the obtained AgNPs have a maximum absorbance peak at 450 nm with spherical morphology and an average size of 13.03 ± 5.8 nm. The catalytic activity of the Cb-AgNPs was investigated using Safranin O (SO) solution as a cationic dye model. The Cb-AgNPs performed well in the removal of SO. The coupled physical adsorption/photocatalysis reaction calculated about 68% and 98% degradation of SO dye under solar irradiation. The Cb-AgNPs inhibited the growth of gram-negative or positive bacteria strains and had excellent DPPH radicals scavenging ability (100% in a concentration of 200 µg/ml) as well as a good effect on reducing coagulation time (at concentrations of 200 and 500 µg/mL reduced clotting time up to 3 min). Considering the fact that green synthesized Cb-AgNPs have antioxidant and antibacterial properties and have a good ability to reduce coagulation time, they can be used in wound dressings. As well as these NPs with good photocatalytic activity can be a suitable option for degrading organic pollutants.
Collapse
Affiliation(s)
- Mohadese Abdoli
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Nanobiotechnology, Faculty of Innovative Science and Technology, Razi University, Kermanshah, Iran
| | - Salar Khaledian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryamosadat Mavaei
- Student's Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Pouria Hajmomeni
- Student's Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahnaz Ghowsi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Farshad Qalekhani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Houshang Nemati
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Fattahi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Komail Sadrjavadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
11
|
Liu JL, Yao J, Tang C, Ma B, Liu X, Bashir S, Sunahara G, Duran R. A critical review on bioremediation technologies of metal(loid) tailings: Practice and policy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121003. [PMID: 38692032 DOI: 10.1016/j.jenvman.2024.121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Globally, most high-grade ores have already been exploited. Contemporary mining tends to focus on the extraction of lower-grade ores thereby leaving large stored tailings open to the environment. As a result, current mines have emerged as hotspots for the migration of metal(loid)s and resistance genes, thereby potentially contributing to a looming public health crisis. Therefore, the management and remediation of tailings are the most challenging issues in environmental ecology. Bioremediation, a cost-effective solution for the treatment of multi-element mixed pollution (co-contamination), shows promise for the restoration of mine tailings. This review focuses on the bioremediation technologies developed to untangle the issues of non-ferrous metal mine tailings. These technologies address the environmental risks of multi-element exposure to the ecosystem and human health risks. It provides a review and comparison of current bioremediation technologies used to mineralize metal(loid)s. The role of plant-microorganisms and their mechanisms in the remediation of tailings are also discussed. The importance of "treating waste with wastes" is crucial for advancing bioremediation technologies. This approach underscores the potential for waste materials to contribute to environmental cleanup processes. The concept of a circular economy is pertinent in this context, emphasizing recycling and reuse. There's an immediate need for international collaboration. Collaboration is needed in policy-making, funding, and data accessibility. Sharing data is essential for the growth of bioremediation globally.
Collapse
Affiliation(s)
- Jian-Li Liu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China.
| | - Jun Yao
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Chuiyun Tang
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Bo Ma
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Xingyu Liu
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Safdar Bashir
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, 83844, USA
| | - Geoffrey Sunahara
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China; Department of Natural Resource Sciences, McGill University, Montreal, Quebec, H9X3V9, Canada
| | - Robert Duran
- School of Water Resources and Environment and Research Center of Environmental Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental Science and Health, Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China; Université de Pau et des Pays de l'Adour/E2S UPPA, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| |
Collapse
|
12
|
Zeng Y, Luo H, He D, Li J, Zhang A, Sun J, Xu J, Pan X. Influence mechanism of anions on iron doping into swine bone char: Promoting non-radical oxidation of acetaminophen in a Fenton-like system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170982. [PMID: 38367723 DOI: 10.1016/j.scitotenv.2024.170982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
The application of iron-doped biochar in peroxymonosulfate (PMS) activation systems has gained increasing attention due to their effectiveness and environmental friendliness in addressing environmental issues. However, the behavioral mechanism of iron doping and the detailed 1O2 generation mechanism in PMS activation systems remain ambiguous. Here, we investigated the effects of three anions (Cl-, NO3-and SO42-) on the process of iron doping into bone char, leading to the synthesis of three iron-doped bone char (Fe-ClBC, Fe-NBC and Fe -SBC). These iron-doped bone char were used to catalyze PMS to degrade acetaminophen (APAP) and exhibited the following activity order: Fe-ClBC > Fe-NBC > Fe-SBC. Characterization results indicated that iron doping primarily occurred through the substitution of calcium in hydroxyapatite within BC. In the course of the impregnation, the binding of SO42- and Ca2+ hindered the exchange of iron ions, resulting in lower catalytic activity of Fe-SBC. The primary reactive oxygen species in the Fe-ClBC/PMS and Fe-NBC/PMS systems were both 1O2. 1O2 is produced through O2•- conversion and PMS self-dissociation, which involves the generation of metastable iron intermediates and electron transfer within iron species. The presence of oxygen vacancies and more carbon defects in the Fe-ClBC catalyst facilitates 1O2 generation, thereby enhancing APAP degradation within the Fe-ClBC/PMS system. This study is dedicated to in-depth exploration of the mechanisms underlying iron doping and defect materials in promoting 1O2 generation.
Collapse
Affiliation(s)
- Yifeng Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China.
| | - Dongqin He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juan Xu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
13
|
Wan Y, Chen S, Liu J, Jin L. Brownfield-related studies in the context of climate change: A comprehensive review and future prospects. Heliyon 2024; 10:e25784. [PMID: 38420456 PMCID: PMC10900957 DOI: 10.1016/j.heliyon.2024.e25784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
The global climate change events are expected to augment the vulnerability of persistent organic pollutants within the global brownfield areas to a certain extent, consequently heightening the risk crises faced by these brownfields amidst the backdrop of global environmental changes. However, studies addressing brownfield risks from the perspective of climate change have received limited attention. Nonetheless, the detrimental consequences of brownfield risks are intrinsically linked to strategies for mitigating and adapting to sustainable urban development, emphasizing the critical importance of their far-reaching implications. This relevance extends to concerns about environmental quality, safety, health risks, and the efficacy of chosen regeneration strategies, including potential secondary pollution risks. This comprehensive review systematically surveys pertinent articles published between 1998 and 2023. A selective analysis was conducted on 133 articles chosen for their thematic relevance. The findings reveal that: (1) Under the backdrop of the climate change process, brownfield restoration is necessitated to provide scientific and precise guidance. The integration of brownfield considerations with the dynamics of climate change has progressively evolved into a unified framework, gradually shaping a research paradigm characterized by "comprehensive + multi-scale + quantitative" methodologies; (2) Research themes coalesce into five prominent clusters: "Aggregation of Brownfield Problem Analysis", "Precision Enhancement of Brownfield Identification through Information Technology", "Diversification of Brownfield Reutilization Assessment", "Process-Oriented Approaches to Brownfield Restoration Strategies", and "Expansion of Ecological Service Functions in Brownfield Contexts"; (3) Application methodologies encompass five key facets: "Temporal and Spatial Distribution Patterns of Pollutants", "Mechanisms and Correlations of Pollution Effects", "Evaluation of Pollution Risks", "Assessment of Brownfield Restoration Strategies", and "Integration of Brownfield Regeneration with Spatial Planning". Future brownfield research from the climate change perspective is poised to reflect characteristics such as "High-Precision Prediction, Comprehensive Dimensionality, Full-Cycle Evaluation, Low-Risk Exposure, and Commitment to Sustainable Development".
Collapse
Affiliation(s)
- Yunshan Wan
- China Architecture Design & Research Group, China
| | - Shuo Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaqi Liu
- China Construction Engineering Design & Research Institute Co., Ltd., China
| | - Lin Jin
- Interdisciplinary Program in Landscape Architecture, Seoul National University, Seoul, Republic of Korea
- Integrated Major in Smart City Global Convergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Yang L, Bi L, Tao X, Shi L, Liu P, Lv Q, Li X, Li J. Highly efficient removal of tetracyclines from water by a superelastic MOF-based aerogel: Mechanism quantitative analysis and dynamic adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120169. [PMID: 38290264 DOI: 10.1016/j.jenvman.2024.120169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/05/2024] [Accepted: 01/20/2024] [Indexed: 02/01/2024]
Abstract
Metal-organic frameworks (MOFs) were promising adsorbents for removing antibiotics, but the inherent poor recyclability of MOF powders limits further application. Moreover, the dominant adsorption mechanisms and their quantitative assessment are less studied. Here, ultrahigh adsorption capacities of 821.51 and 931.87 mg g-1 for tetracycline (TC) and oxytetracycline (OTC), respectively, were realised by a novel adsorbents (biochar loaded with MIL-88B(Fe), denoted as BC@MIL-88B(Fe)), which were further immobilised in a 3D porous gelatin (GA) substrate. The obtained BCM/GA200 showed superior adsorption performance under wide pH ranges and under the interference of humic acid. Moreover, it can survive >8 cycles and even maintain high adsorption efficiency in different actual water samples. Notably, BCM/GA200 can selectively remove tetracyclines in a multivariate system containing other kinds of antibiotics and from a dynamic adsorption system. Most importantly, the results of X-ray photoelectron spectroscopy, 2D Fourier transform infrared correlation spectroscopy (2D-FTIR-COS) and density functional theory techniques revealed that (1) for TC adsorption, at pH < 4.0, the contribution of complexation was 25 %-45 %, whereas pore filling and hydrogen bonding accounted for 39 %-72 % of the total uptake. At 4.0 < pH < 10.0, the contribution of complexation increased to 60 %-82 %, whereas electrostatic attraction and π-π interaction were 4 %-13 % and 2 %-10 %, respectively. (2) For OTC adsorption, complexation was dominant at 3.0 < pH < 10.0, accounting for 55 %-86 % of the total uptake, and electrostatic attraction and π-π interactions caused 3 %-10 % and 3 %-15 %, respectively. (3) At pH > 10.0, pore filling dominated TC and OTC adsorption. Finally, the reaction sequences of the main adsorption mechanisms were also probed by 2D-FTIR-COS. This work solves the poor recyclability of MOF powders and provides a mechanistic insight into antibiotic removal by MOFs.
Collapse
Affiliation(s)
- Le Yang
- Anhui Province Key Laboratory of Farm Land Ecological Conservation and Pollution Prevention, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Lulu Bi
- Anhui Province Key Laboratory of Farm Land Ecological Conservation and Pollution Prevention, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Xiuxiu Tao
- Anhui Province Key Laboratory of Farm Land Ecological Conservation and Pollution Prevention, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Lei Shi
- Anhui Province Key Laboratory of Farm Land Ecological Conservation and Pollution Prevention, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Peipei Liu
- Anhui Province Key Laboratory of Farm Land Ecological Conservation and Pollution Prevention, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Quankun Lv
- Anhui Province Key Laboratory of Farm Land Ecological Conservation and Pollution Prevention, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China
| | - Xuede Li
- Anhui Province Key Laboratory of Farm Land Ecological Conservation and Pollution Prevention, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China.
| | - Jie Li
- Anhui Province Key Laboratory of Farm Land Ecological Conservation and Pollution Prevention, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, PR China; Hefei Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, PR China.
| |
Collapse
|
15
|
Zou Z, Qin Y, Zhang T, Tan K. Enhancing road performance of lead-contaminated soil through biochar-cement solidification: An experimental study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119315. [PMID: 37844401 DOI: 10.1016/j.jenvman.2023.119315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
The effectiveness of cement-based solidification for remediating heavy metal-contaminated soil diminishes at high levels of contamination. To overcome this limitation, the potential of a biochar-cement composite curing agent to enhance the properties of Pb 2+ contaminated soil was investigated in this study. The permeability, unconfined compressive strength (UCS), and leaching characteristics of the biochar-cement composite material were assessed under varying biochar contents. The results revealed that the addition of 1-5 wt% biochar in cement significantly improved the UCS of the solidified soil. However, excessive biochar contents had a detrimental effect on the strength of samples. Additionally, the incorporation of 3.0% biochar reduced the hydraulic conductivity and porosity to 7.75 × 10-9 cm/s and 43.12%, respectively. Moreover, the biochar-cement composite material exhibited remarkable efficiency in treating highly concentrated Pb2+ contaminated soil, with leaching concentration decreasing significantly with increasing biochar content, falling below the Chinese hazardous waste identification standard. Overall, the utilization of a biochar-cement composite curing agent in the solidification of heavy metal-contaminated soil could be considered a promising subgrade filler technique.
Collapse
Affiliation(s)
- Zhenjie Zou
- College of Civil Engineering and Architecture, Guangxi University, 100 University Road, Nanning, Guangxi, 530004, China
| | - Yinghong Qin
- College of Civil Engineering and Architecture, Guangxi University, 100 University Road, Nanning, Guangxi, 530004, China
| | - Tongsheng Zhang
- School of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Kanghao Tan
- College of Civil Engineering and Architecture, Guangxi University, 100 University Road, Nanning, Guangxi, 530004, China; School of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, China.
| |
Collapse
|
16
|
Liu H, Liu M, Zong X, Liu A, Yuan M, Fang S. Mechanism of safener mefenpyr-diethyl biodegradation by a newly isolated Chryseobacterium sp. B6 from wastewater sludge and application in co-contaminated soil. CHEMOSPHERE 2023; 345:140385. [PMID: 37839750 DOI: 10.1016/j.chemosphere.2023.140385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 07/14/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Safener mefenpyr-diethyl (MFD) was applied to cereal crops along with herbicides to improve herbicide selectivity for crops and weeds. However, the degradation mechanism of MFD in the environment remains unclear. One MFD-degrading bacterium, Chryseobacterium sp. B6, was isolated from activated sludge. According to Box-Behnken's optimal design, the degradation efficiency of MFD can reach 92% under conditions of pH 7.5, 30 °C, and a MFD concentration of 184 mg L-1. The degradation half-life experiment showed that a high concentration of MFD (300 mg L-1) inhibited the degradation ability of strain B6. Additionally, strain B6 was resistant to Ba2+, Cr3+, Li+, Zn2+, and Cu2+. The MFD degradation products of strain B6 were detected by GC/MS and its degradation pathway was proposed. MFD was first hydrolyzed by a hydrolase to an intermediate (RS)-1-(2,4-dichlorophenyl)-5-methyl-2-pyrazoline-5-carboxylic acid ethyl ester-3-carboxylic acid, and then further degraded by a decarboxylase to form the intermediate (RS)-1-(2,4-dichlorophenyl)-5-methyl-2-pyrazoline-5-carboxylic acid ethyl ester, finally, it is completely degraded by strain B6. Furthermore, strain B6 could effectively remove MFD from MFD-contaminated soil, and the half-life of MFD was also significantly reduced in MFD and Cu2+ co-contaminated soil after inoculating strain B6. To our knowledge, strain B6 was the first strain reported to degrade safener MFD, and this study provides a valuable candidate to remediate the co-contaminated soil with MFD and Cu2+.
Collapse
Affiliation(s)
- Hongming Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, 241000, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, PR China.
| | - Mengna Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, 241000, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, PR China
| | - Xuan Zong
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, 241000, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, PR China
| | - Aimin Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, 241000, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, PR China
| | - Meng Yuan
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Anhui Normal University, Wuhu, 241000, PR China; Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, PR China
| | - Shangping Fang
- School of Anesthesiology, Wannan Medical College, Wuhu, Anhui, 241002, PR China.
| |
Collapse
|
17
|
Yang S, Cao C, Yan S, Gu Y, Ji J, Zhou Z, Liu C, Yang J, Zhang R, Xue Y, Tang C. Condensation-assembly synthesis of three-dimensionally porous boron nitride for effective oil removal. CHEMOSPHERE 2023; 345:140530. [PMID: 37890791 DOI: 10.1016/j.chemosphere.2023.140530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
A template-free pyrolysis route has been developed using condensation-assembly precursors made of trimethoxyboroxane (TMB) and melamine (M) to cater the requirements of an industrial real-world environment. The precursors contain abundant B-N bonds and exhibit a high level of interconnectivity, resulting in 3D-PBN with enhanced mechanical properties and the ability to be easily customized in terms of shape. Moreover, 3D-PBN demonstrates rapid adsorption kinetics and excellent reusability, efficiently removing up to 270% of its own weight of fuel within 30 s and being readily regenerated through simple calcination. Even after undergoing 50 cycles, the mechanical properties remain at a remarkable 80%, while the adsorption performance exceed 95%. Furthermore, a comprehensive analysis of thermal behavior from precursor to 3D-PBN has been conducted, leading to the proposal of a molecular-scale evolution process comprising four major steps. This understanding enables us to control the phase reaction and regulate the composition of the products, which is crucial for determining the characteristics of the final product.
Collapse
Affiliation(s)
- Shaobo Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| | - Chaochao Cao
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China; Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, PR China.
| | - Song Yan
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| | - Yaxin Gu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| | - Jiawei Ji
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| | - Zheng Zhou
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| | - Chaoze Liu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| | - Jingwen Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| | - Rongjuan Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| | - Yanming Xue
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China
| | - Chengchun Tang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin, 300130, PR China.
| |
Collapse
|
18
|
El Rasafi T, Haouas A, Tallou A, Chakouri M, Aallam Y, El Moukhtari A, Hamamouch N, Hamdali H, Oukarroum A, Farissi M, Haddioui A. Recent progress on emerging technologies for trace elements-contaminated soil remediation. CHEMOSPHERE 2023; 341:140121. [PMID: 37690564 DOI: 10.1016/j.chemosphere.2023.140121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Abiotic stresses from potentially toxic elements (PTEs) have devastating impacts on health and survival of all living organisms, including humans, animals, plants, and microorganisms. Moreover, because of the rapid growing industrial activities together with the natural processes, soil contamination with PTEs has pronounced, which required an emergent intervention. In fact, several chemical and physical techniques have been employed to overcome the negative impacts of PTEs. However, these techniques have numerous drawback and their acceptance are usually poor as they are high cost, usually ineffectiveness and take longer time. In this context, bioremediation has emerged as a promising approach for reclaiming PTEs-contaminated soils through biological process using bacteria, fungus and plants solely or in combination. Here, we comprehensively reviews and critically discusses the processes by which microorganisms and hyperaccumulator plants extract, volatilize, stabilize or detoxify PTEs in soils. We also established a multi-technology repair strategy through the combination of different strategies, such as the application of biochar, compost, animal minure and stabilized digestate for stimulation of PTE remediation by hyperaccumulators plants species. The possible use of remote sensing of soil in conjunction with geographic information system (GIS) integration for improving soil bio-remediation of PTEs was discussed. By synergistically combining these innovative strategies, the present review will open very novel way for cleaning up PTEs-contaminated soils.
Collapse
Affiliation(s)
- Taoufik El Rasafi
- Health and Environment Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, B.P 5366, Maarif, Casablanca, Morocco.
| | - Ayoub Haouas
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Anas Tallou
- Department of Soil, Plant and Food Sciences - University of Bari "Aldo Moro", Italy
| | - Mohcine Chakouri
- Team of Remote Sensing and GIS Applied to Geosciences and Environment, Department of Earth Sciences, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Yassine Aallam
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco; Mohammed VI Polytechnic (UM6P) University, Ben Guerir, Morocco
| | - Ahmed El Moukhtari
- Ecology and Environment Laboratory, Faculty of Sciences Ben Msik, Hassan II University, PO 7955, Sidi Othmane, Casablanca, Morocco
| | - Noureddine Hamamouch
- Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fes, Morocco
| | - Hanane Hamdali
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco
| | | | - Mohamed Farissi
- Laboratory of Biotechnology and Sustainable Development of Natural Resources, Polydisciplinary Faculty, USMS, Beni Mellal, Morocco
| | - Abdelmajid Haddioui
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco
| |
Collapse
|
19
|
Sar P, Kundu S, Ghosh A, Saha B. Natural surfactant mediated bioremediation approaches for contaminated soil. RSC Adv 2023; 13:30586-30605. [PMID: 37859781 PMCID: PMC10583161 DOI: 10.1039/d3ra05062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
The treatment of environmental pollution by employing microorganisms is a promising technology, termed bioremediation, which has several advantages over the other established conventional remediation techniques. Consequently, there is an urgent inevitability to develop pragmatic techniques for bioremediation, accompanied by the potency of detoxifying soil environments completely. The bioremediation of contaminated soils has been shown to be an alternative that could be an economically viable way to restore polluted soil. The soil environments have long been extremely polluted by a number of contaminants, like agrochemicals, polyaromatic hydrocarbons, heavy metals, emerging pollutants, etc. In order to achieve a quick remediation overcoming several difficulties the utility of biosurfactants became an excellent advancement and that is why, nowadays, the biosurfactant mediated recovery of soil is a focus of interest to the researcher of the environmental science field specifically. This review provides an outline of the present scenario of soil bioremediation by employing a microbial biosurfactant. In addition to this, a brief account of the pollutants is highlighted along with how they contaminate the soil. Finally, we address the future outlook for bioremediation technologies that can be executed with a superior efficiency to restore a polluted area, even though its practical applicability has been cultivated tremendously over the few decades.
Collapse
Affiliation(s)
- Pintu Sar
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur - 741246 West Bengal India
| | - Sandip Kundu
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| | - Aniruddha Ghosh
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| | - Bidyut Saha
- Department of Chemistry, The University of Burdwan Golapbag Burdwan 713104 WB India
| |
Collapse
|
20
|
Deng B, Carter RA, Cheng Y, Liu Y, Eddy L, Wyss KM, Ucak-Astarlioglu MG, Luong DX, Gao X, JeBailey K, Kittrell C, Xu S, Jana D, Torres MA, Braam J, Tour JM. High-temperature electrothermal remediation of multi-pollutants in soil. Nat Commun 2023; 14:6371. [PMID: 37821460 PMCID: PMC10567823 DOI: 10.1038/s41467-023-41898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
Soil contamination is an environmental issue due to increasing anthropogenic activities. Existing processes for soil remediation suffer from long treatment time and lack generality because of different sources, occurrences, and properties of pollutants. Here, we report a high-temperature electrothermal process for rapid, water-free remediation of multiple pollutants in soil. The temperature of contaminated soil with carbon additives ramps up to 1000 to 3000 °C as needed within seconds via pulsed direct current input, enabling the vaporization of heavy metals like Cd, Hg, Pb, Co, Ni, and Cu, and graphitization of persistent organic pollutants like polycyclic aromatic hydrocarbons. The rapid treatment retains soil mineral constituents while increases infiltration rate and exchangeable nutrient supply, leading to soil fertilization and improved germination rates. We propose strategies for upscaling and field applications. Techno-economic analysis indicates the process holds the potential for being more energy-efficient and cost-effective compared to soil washing or thermal desorption.
Collapse
Affiliation(s)
- Bing Deng
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
| | - Robert A Carter
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Yi Cheng
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Yuan Liu
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
| | - Lucas Eddy
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Applied Physics Program, Rice University, Houston, TX, 77005, USA
- Smalley-Curl Institute, Rice University, Houston, TX, 77005, USA
| | - Kevin M Wyss
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Mine G Ucak-Astarlioglu
- Geotechnical and Structures Laboratory, U.S. Army Engineer Research & Development Center, Vicksburg, MS, 39180, USA
| | - Duy Xuan Luong
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
- Applied Physics Program, Rice University, Houston, TX, 77005, USA
| | - Xiaodong Gao
- Department of Earth, Environmental, & Planetary Sciences, Rice University, Houston, TX, 77005, USA
- Carbon Hub, Rice University, Houston, TX, 77005, USA
| | - Khalil JeBailey
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Carter Kittrell
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Shichen Xu
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Debadrita Jana
- Department of Earth, Environmental, & Planetary Sciences, Rice University, Houston, TX, 77005, USA
| | - Mark Albert Torres
- Department of Earth, Environmental, & Planetary Sciences, Rice University, Houston, TX, 77005, USA
| | - Janet Braam
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX, 77005, USA.
- Smalley-Curl Institute, Rice University, Houston, TX, 77005, USA.
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA.
- NanoCarbon Center and the Rice Advanced Materials Institute, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
21
|
Lee YY, Lee SY, Cho KS. Long-term comparison of the performance of biostimulation and phytoextraction in soil contaminated with diesel and heavy metals. CHEMOSPHERE 2023:139332. [PMID: 37364638 DOI: 10.1016/j.chemosphere.2023.139332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The long-term remediation performance under the natural conditions is required to establish the appropriate remediation strategy for contaminated soil. The objective of this study was to compare the long-term remediation efficiency of biostimulation and phytoextraction in contaminated soil containing petroleum hydrocarbons (PHs) and heavy metals. Two types of contaminated soil (soil contaminated with diesel only and co-contaminated with diesel and heavy metals) were prepared. For the biostimulation treatments, the soil was amended with compost, whereas maize, a representative phytoremediation plant, was cultivated for the phytoextraction treatments. There was no significant difference in remediation performance of biostimulation and phytoextraction in the diesel-contaminated soil, in which the maximum total petroleum hydrocarbon (TPH) removability was 94-96% (p < 0.05). However, phytoextraction exhibited the higher removability for TPH and heavy metals than biostimulation in the co-contaminated soil. There was no considerable change in the TPH removal in biostimulation (16-25%), while phytoextraction showed a 75% of TPH removal rate in the co-contaminated soil. Additionally, no significant changes were observed in heavy metals concentration of biostimulation, whereas the removability of heavy metals was 33-63% in phytoextraction. Meanwhile, maize, which is a suitable plant for phytoextraction, showed a translocation factor (translocating efficiency from roots to shoots) value of >1. Correlation analysis revealed that soil properties (pH, water content, and organic content) negatively correlated with pollutants removal. Additionally, the soil bacterial communities were changed over the investigated period, and the types of pollutants exerted a significant influence on the bacterial community dynamics. This study performed a pilot-scale comparison of two types of biological remediation technologies under natural environmental conditions and provided information on changes in the bacterial community structures. This study can be useful for establishing appropriate biological remediation methods to restore soil contaminated with PHs and heavy metals.
Collapse
Affiliation(s)
- Yun-Yeong Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Soo Yeon Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
22
|
Pacholak A, Juzwa W, Zgoła-Grześkowiak A, Kaczorek E. Multi-faceted analysis of bacterial transformation of nitrofurantoin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162422. [PMID: 36863585 DOI: 10.1016/j.scitotenv.2023.162422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Excessive presence of antibiotics and their residues can be dangerous to the natural environment. To reduce this negative effect, efficient strategies to remove them from the ecosystem are required. This study aimed to explore the potential of bacterial strains to degrade nitrofurantoin (NFT). Single strains isolated from contaminated areas, namely Stenotrophomonas acidaminiphila N0B, Pseudomonas indoloxydans WB, and Serratia marcescens ODW152 were employed in this study. Degradation efficiency and dynamic changes within the cells during NFT biodegradation were investigated. For this purpose, atomic force microscopy, flow cytometry, zeta potential, and particle size distribution measurements were applied. Serratia marcescens ODW152 showed the highest performance in removal of NFT (96 % in 28 days). The AFM images revealed modifications of cell shape and surface structure induced by NFT. Zeta potential showed significant variations during biodegradation. Cultures exposed to NFT had a broader size distribution than the control cultures due to increased cells agglomeration or aggregation. 1-Aminohydantoin and semicarbazide were detected as nitrofurantoin biotransformation products. They showed increased cytotoxicity toward bacteria as determined by spectroscopy and flow cytometry. Results of this study suggest that nitrofurantoin biodegradation leads to formation of stable transformation products that significantly affect the physiology and structure of bacterial cells.
Collapse
Affiliation(s)
- Amanda Pacholak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland.
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Faculty of Food Science, Poznan University of Life Sciences, Poznan, Poland
| | | | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
23
|
Li X, Wu S, Fan H, Dong Y, Wang Y, Bai Z, Jing C, Zhuang X. Phylogenetic distance affects the artificial microbial consortia's effectiveness and colonization during the bioremediation of polluted soil with Cr(VI) and atrazine. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131460. [PMID: 37141777 DOI: 10.1016/j.jhazmat.2023.131460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023]
Abstract
Soils co-contaminated with heavy metals and organic pollutants are common and threaten the natural environment and human health. Although artificial microbial consortia have advantages over single strains, the mechanism affecting their effectiveness and colonization in polluted soils still requires determination. Here, we constructed two kinds of artificial microbial consortia from the same or different phylogenetic groups and inoculated them into soil co-contaminated with Cr(VI) and atrazine to study the effects of phylogenetic distance on consortia effectiveness and colonization. The residual concentrations of pollutants demonstrated that the artificial microbial consortium from different phylogenetic groups achieved the highest removal rates of Cr(VI) and atrazine. The removal rate of 400 mg/kg atrazine was 100%, while that of 40 mg/kg Cr(VI) was 57.7%. High-throughput sequence analysis showed that the soil bacterial negative correlations, core genera, and potential metabolic interactions differed among treatments. Furthermore, artificial microbial consortia from different phylogenetic groups had better colonization and a more significant effect on the abundance of native core bacteria than consortia from the same phylogenetic group. Our study highlights the importance of phylogenetic distance on consortium effectiveness and colonization and offers insight into the bioremediation of combined pollutants.
Collapse
Affiliation(s)
- Xianglong Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Haonan Fan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Dong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaxin Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanyong Jing
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Wu S, Li X, Fan H, Dong Y, Wang Y, Bai Z, Zhuang X. Engineering artificial microbial consortia based on division of labor promoted simultaneous removal of Cr(VI)-atrazine combined pollution. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130221. [PMID: 36367470 DOI: 10.1016/j.jhazmat.2022.130221] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Combined pollution caused by organic pollutants and heavy metals is common in polluted sites and wastewater. Engineering artificial microbial consortia offers a promising approach to address this complex issue. However, the mutualistic interactions and the critical function of specific microbe within microbial consortia remain unclear. In this study, based on division of labor, we respectively co-cultured two Cr(VI)-reducing strains, Paenarthrobacter nitroguajacolicus C1 and Pseudomonas putida C2, with an atrazine-degrading strain, Paenarthrobacter ureafaciens AT. After 5 days, up to 95 % Cr(VI) and 100 % atrazine were removed from the cocultures. Strain AT degraded nearly all atrazine and contributed only to a fraction of Cr(VI) reduction, whereas C1 promoted 41 % Cr(VI) transformation to Cr(III) fixed in cells, and C2 promoted 91 % Cr(VI) transformation to soluble Cr(III). Metabolic analyses of the cocultures and monocultures demonstrated that AT provided C1 with isopropylamine by passive diffusion and C2 with other effective nitrogen resources by cell-cell surface contact to promote their growth. Soil experiments also showed that treatments with AT and C2 achieved the highest Cr(VI) reduction and no atrazine residue. Our results indicate that engineering artificial microbial consortia based on division of labor and metabolic interactions is effective in promoting highly efficient bioremediation of combined pollution.
Collapse
Affiliation(s)
- Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xianglong Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haonan Fan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Dong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaxin Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
25
|
Zhang P, Liu XQ, Yang LY, Sheng HZY, Qian AQ, Fan T. Immobilization of Cd 2+ and Pb 2+ by biomineralization of the carbonate mineralized bacterial consortium JZ1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22471-22482. [PMID: 36301386 DOI: 10.1007/s11356-022-23587-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Microbially induced carbonate precipitation (MICP) has been proven to effectively immobilize Cd2+ and Pb2+ using a single bacterium. However, there is an urgent need for studies of Cd2+ and Pb2+ immobilized by a bacterial consortium. In this study, a stable consortium designated JZ1 was isolated from soil that was contaminated with cadmium and lead, and the dominant genus Sporosarcina (99.1%) was found to have carbonate mineralization function. The results showed that 91.52% and 99.38% of Cd2+ and Pb2+ were mineralized by the consortium JZ1 with 5 g/L CaCl2 at an initial concentration of 5 mg/L Cd2+ and 150 mg/L Pb2+, respectively. The bioprecipitates were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Moreover, the kinetic studies indicated that the urea hydrolysis reaction fit well with the Michaelis-Menten equation, and the kinetic parameters Km and Vmax were estimated to be 38.69 mM and 58.98 mM/h, respectively. When the concentration of urea increased from 0.1 to 0.3 M, the mineralization rate increased by 1.58-fold. This study can provide a novel microbial resource for the biomineralization of Cd and Pb in soil and water environments.
Collapse
Affiliation(s)
- Peng Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Xiao-Qiang Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Li-Yuan Yang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Hua-Ze-Yu Sheng
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - An-Qi Qian
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Ting Fan
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
26
|
Sun J, Luo J, Ma R, Lin J, Fang L. Effects of microwave and plastic content on the sulfur migration during co-pyrolysis of biomass and plastic. CHEMOSPHERE 2023; 305:135457. [PMID: 36584830 DOI: 10.1016/j.chemosphere.2022.135457] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 05/25/2023]
Abstract
In order to reduce the risks of sulfur-containing contaminants present in biofuels, the effects of microwave and content of hydrogen donor on the cracking of C-S bonds and the migration of sulfur were studied by co-pyrolysis of biomass and plastic. The synergistic mechanism of microwave and hydrogen donor was explored from the perspective of deducing the evolution of sulfur-containing compounds based on microwave thermogravimetric analysis. By combining temperature-weight curves, it was found that microwaves and hydrogen radicals promoted the cracking of sulfur-containing compounds and increased the mass loss of biomass during pyrolysis. The mixing ratio of hydrogen donor (plastic) was the key parameter resulting in the removal of sulfur from oil. By adjusting the mixing ratio, the yield of co-pyrolyzed oil was three times higher than that of cow dung pyrolysis alone and the relative removal rate of sulfur reached 73.67%. The relative content of sulfur in the oil was reduced by 73.77% due to the escape of sulfur-containing gases (H2S, COS and C2H5SH) and the formation of sulfate crystals in the char. Microwave selectively heated sulfur-containing organics and hydrogen radicals stimulated the breaking of C-S bonds, which improved the cracking efficiency of the oil. This breaking will provide a theoretical and technological reference for the environmentally friendly treatment of biomass and biofuels.
Collapse
Affiliation(s)
- Jiaman Sun
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Juan Luo
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Rui Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Junhao Lin
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lin Fang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
27
|
Shabir R, Li Y, Zhang L, Chen C. Biochar surface properties and chemical composition determine the rhizobial survival rate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116594. [PMID: 36347218 DOI: 10.1016/j.jenvman.2022.116594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Biochar may be potentially used as a rhizobial carrier due to its specific chemical compositions and surface properties, but the relationship between these properties and rhizobial survival rate is largely unknown. Here, we analysed the physicochemical characteristics and carrier potential of six types of biochars made from various feedstocks at 600 °C using slow pyrolysis method, and results were compared with conventional carrier material peat. Liquid suspension of Bradyrhziobium japonicum CB1809 was used to inoculate all the carrier materials. Shelf life and survival rate was determined via colony forming unit (CFU) method for up to 90 days under two storage temperature conditions (28 °C and 38 °C). The determined physicochemical characteristics of biochars were categorized into major elements, trace elements, relative ratios, surface morphology, functional groups, and key basic properties; and their interaction to shelf life was analysed using hypothesis-oriented structure equation modelling (path analysis). Results revealed that different types of biochars had different capacity to impact on shelf life due to their different physicochemical properties. Among all biochars pine wood BC was the most suitable carrier with the highest counts of 10.11 Log 10 CFU g-1 and 9.76 Log 10 CFU g-1 at the end of 90 days at 28 °C and 38 °C storage, respectively. Path analysis revealed that rhizobial shelf life was largely explained by total carbon (TC), manganese (Mn), specific surface area (SSA), pore size, CO (ketonic carbon), and O-CO (carboxyl carbon) functional groups, and all these indicators exhibited positive direct impact on shelf life. Pinewood BC showed the highest values of Mn, SSA, pore size and functional groups (CO and O-CO), contributing to its highest rhizobial shelf life and survival rate among other biochars and peat tested.
Collapse
Affiliation(s)
- Rahat Shabir
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Yantao Li
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Leiyi Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Chengrong Chen
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, 4111, Queensland, Australia; Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia.
| |
Collapse
|
28
|
Applied of actinobacteria consortia-based bioremediation to restore co-contaminated systems. Res Microbiol 2023; 174:104028. [PMID: 36638934 DOI: 10.1016/j.resmic.2023.104028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Global industrialization and natural resources extraction have left cocktails of environmental pollutants. Thus, this work focuses on developing a defined actinobacteria consortium able to restore systems co-contaminated with pollutants occurring in Argentinian environments. In this context, five actinobacteria were tested in solid medium to evaluate antagonistic interactions and tolerance against lindane (LIN), Reactive Black B-V (RBV), phenanthrene (Ph) and Cr(VI). The strains showed absence of antagonism, and most of them tolerated the presence of individual pollutants and their mixtures, except Micromonospora sp. A10. Thus, a quadruple consortium constituted by Streptomyces sp. A5, M7, MC1, and Amycolatopsis tucumanensis DSM 45259T, was tested in liquid systems with individual contaminants. The best microbial growth was observed in the presence of RBV and the lowest on Cr(VI). Removals detected were 83.3%, 65.0% and 52.4% for Ph, RBV and LIN, respectively, with absence of Cr(VI) dissipation. Consequently, the consortium performance was tested against the organic mixture, and a microbial growth similar to the biotic control and a LIN removal increase (61.2%) were observed. Moreover, the four actinobacteria of the consortium survived the mixture bioremediation process. These results demonstrate the potential of the defined actinobacteria consortium as a tool to restore environments co-contaminated with organic pollutants.
Collapse
|
29
|
Li C, Song B, Chen Z, Liu Z, Yu L, Zhi Z, Zhao Y, Wei H, Song M. Immobilization of heavy metals in ceramsite prepared using contaminated soils: Effectiveness and potential mechanisms. CHEMOSPHERE 2023; 310:136846. [PMID: 36243092 DOI: 10.1016/j.chemosphere.2022.136846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal contaminated soils pose a serious threat to the environment, and preparing ceramsite using contaminated soils was proposed as an effective method to address this threat in this study. Specifically, two typical soils (i.e., contaminated clay and sandy soil) were mixed with different ratios and calcined at temperature 1000-1200 °C to prepare ceramsite. Special attentions were paid to evaluating the immobilization of heavy metals in ceramsite and identifying the corresponding immobilization mechanisms. Using the leachability of heavy metals from ceramsite as evaluation criteria, the optimum mixing ratio of clay/sandy soil and sintering temperature were determined as 0.6:0.4 and 1200 °C. Moreover, based on the spectroscopic characterizations and thermodynamic calculation, high sintering temperature well facilitated the liquid phases formation, promoting the reactions between heavy metals and aluminosilicates and the valence state conversion of heavy metals. Accordingly, heavy metals were well immobilized in ceramsite by forming thermodynamically stable minerals, being encapsulated in solid matrix, and transforming to valence states with low mobility. The leaching conditions including pH and temperature had minimal effect on the immobilization of heavy metals in ceramsite. In summary, ceramsite prepared by contaminated soils was environmentally friendly and had good potential in engineering application as building materials.
Collapse
Affiliation(s)
- Chengming Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Bing Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zhiliang Chen
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, United States
| | - Zequan Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lei Yu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - ZeJian Zhi
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yan Zhao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hong Wei
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Min Song
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China; Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Nanjing, Jiangsu 210036, China.
| |
Collapse
|
30
|
Qiao K, Wang Q, Liu X, Gong S, Wang J. Cadmium/lead tolerance of six Dianthus species and detoxification mechanism in Dianthus spiculifolius. CHEMOSPHERE 2023; 312:137258. [PMID: 36402351 DOI: 10.1016/j.chemosphere.2022.137258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Toxic heavy metal contaminants seriously affect plant growth and human health. Reducing the accumulation of toxic metals by phytoremediation is an effective way to solve this environmental problem. Dianthus spiculifolius Schur is an ornamental plant with strong cold and drought tolerance. Because of its fast growth, well-developed root system, and large accumulation of biomass, D. spiculifolius has potential applications as a heavy metal hyperaccumulator. Therefore, the aim of this study was evaluate the ability of D. spiculifolius and other Dianthus species to remediate heavy metals, with an ultimate goal to identify available genetic resources for toxic metal removal. The cadmium (Cd) and lead (Pb) tolerance and accumulation of six Dianthus species were analyzed comparatively in physiological and biochemical experiments. Compared with the other Dianthus species, D. spiculifolius showed higher tolerance to, and greater accumulation of, Cd and Pb. Second-generation transcriptome analysis indicated that glutathione transferase activity was increased and the glutathione metabolism pathway was enriched with genes encoding antioxidant enzymes (DsGST, DsGST3, DsGSTU10, DsGGCT2-1, and DsIDH-2) that were up-regulated under Cd/Pb treatment by RT-qPCR in D. spiculifolius. When expressed in yeast, DsGST, DsGST3, DsGSTU10 and DsIDH-2 enhanced Cd or Pb tolerance. These results indicate that D. spiculifolius has potential applications as a new ornamental hyperaccumulator plant, and that antioxidant enzymes might be involved in regulating Cd/Pb accumulation and detoxification. The findings of this study reveal some novel genetic resources that can be used to breed new plant varieties that tolerate and accumulate heavy metals.
Collapse
Affiliation(s)
- Kun Qiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qi Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiang Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shufang Gong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jingang Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
31
|
Zhang Y, Ma J, Miao J, Yue L, Cheng M, Li Y, Jing Z. Self-regulated immobilization behavior of multiple heavy metals via zeolitization towards a novel hydrothermal technology for soil remediation. ENVIRONMENTAL RESEARCH 2023; 216:114726. [PMID: 36343717 DOI: 10.1016/j.envres.2022.114726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
More efficient soil remediation technologies are highly anticipated to treat large quantities of heavy metal-polluted urban sites nowadays. Herein, a novel hydrothermal technology of converting heavy metal-polluted soils into zeolites for in-situ immobilizing heavy metals was proposed. The zeolites (analcime and cancrinite) could be synthesized hydrothermally with certain Na/Si and Al/Si ratios. The formed zeolites could manage to change their species and structure during zeolitization to accommodate different heavy metals in soil according to their size and charge. Since smaller-size Cu2+ was introduced, analcime and some cancrinite possessing small cages could be formed adaptively to immobilize the Cu2+ by replacing Na+ and forming Cu2+-OH and Cu2+-O. Whereas, cancrinite with large channels managed to form to immobilize the larger-size Cd2+ by forming Cd2+-O. Interplanar spacing variation of zeolites also corresponded to their structural change for accommodating different heavy metals. Leaching results showed the amounts of Cu and Cd leached from the synthesized zeolites were reduced to 0.005% and 0.05% respectively, reflecting a more stable immobilization of smaller heavy metals by small cages, in agreement with the results of distribution coefficient (Kd). Negligible effect of pH environment on the leaching rates further confirmed the stable structural immobilization of heavy metals by zeolites.
Collapse
Affiliation(s)
- Yafei Zhang
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, No.4800 Cao'an Highway, Shanghai, 201804, China
| | - Jing Ma
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, No.4800 Cao'an Highway, Shanghai, 201804, China
| | - Jiajun Miao
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, No.4800 Cao'an Highway, Shanghai, 201804, China
| | - Liang Yue
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, No.4800 Cao'an Highway, Shanghai, 201804, China
| | - Mingzhao Cheng
- Shanghai HighGood New Materials Technology Co., Ltd, No.4801 Cao'an Highway, Shanghai, 201804, China
| | - Yi Li
- Shanghai HighGood New Materials Technology Co., Ltd, No.4801 Cao'an Highway, Shanghai, 201804, China
| | - Zhenzi Jing
- Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, No.4800 Cao'an Highway, Shanghai, 201804, China.
| |
Collapse
|
32
|
Dhuldhaj UP, Singh R, Singh VK. Pesticide contamination in agro-ecosystems: toxicity, impacts, and bio-based management strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9243-9270. [PMID: 36456675 DOI: 10.1007/s11356-022-24381-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Continuous rise in application of pesticides in the agro-ecosystems in order to ensure food supply to the ever-growing population is of greater concern to the human health and the environment. Once entered into the agro-ecosystem, the fate and transport of pesticides is determined largely by the nature of pesticides and the soil attributes, in addition to the soil-inhabiting microbes, fauna, and flora. Changes in the soil microbiological actions, soil properties, and enzymatic activities resulting from pesticide applications are the important factors substantially affecting the soil productivity. Disturbances in the microbial community composition may lead to the considerable perturbations in cycling of major nutrients, metals, and subsequent uptake by plants. Indiscriminate applications are linked with the accumulation of pesticides in plant-based foods, feeds, and animal products. Furthermore, rapid increase in the application of pesticides having long half-life has also been reported to contaminate the nearby aquatic environments and accumulation in the plants, animals, and microbes surviving there. To circumvent the negative consequences of pesticide application, multitude of techniques falling in physical, chemical, and biological categories are presented by different investigators. In the present study, important findings pertaining to the pesticide contamination in cultivated agricultural soils; toxicity on soil microbes, plants, invertebrates, and vertebrates; effects on soil characteristics; and alleviation of toxicity by bio-based management approaches have been thoroughly reviewed. With the help of bibliometric analysis, thematic evolution and research trends on the bioremediation of pesticides in the agro-ecosystems have also been highlighted.
Collapse
Affiliation(s)
- Umesh Pravin Dhuldhaj
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded, 431606, India
| | - Rishikesh Singh
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | - Vipin Kumar Singh
- Department of Botany, K. S. Saket P. G. College, (Affiliated to Dr. Ram Manohar Lohia Avadh University), Ayodhya, 224123, India.
| |
Collapse
|
33
|
Siles JA, Hendrickson AJ, Terry N. Coupling of metataxonomics and culturing improves bacterial diversity characterization and identifies a novel Rhizorhapis sp. with metal resistance potential in a multi-contaminated waste sediment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116132. [PMID: 36067666 DOI: 10.1016/j.jenvman.2022.116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Long-term contaminated environments have been recognized as potential hotspots for bacterial discovery in taxonomic and functional terms for bioremediation purposes. Here, bacterial diversity in waste sediment collected from a former industrial dumpsite and contaminated with petroleum hydrocarbon and heavy metals was investigated through the parallel application of culture-independent (16S rRNA gene amplicon sequencing) and -dependent (plate culturing followed by colony picking and identification of isolates by 16S rRNA gene Sanger sequencing) approaches. The bacterial diversities retrieved by both approaches greatly differed. Bacteroidetes and Proteobacteria were dominant in the culture-independent community, while Firmicutes and Actinobacteria were the main culturable groups. Only 2.7% of OTUs (operational taxonomic units) in the culture-independent dataset were cultured. Most of the culturable OTUs were absent or in very low abundances in the culture-independent dataset, revealing that culturing is a useful tool to study the rare bacterial biosphere. One culturable OTUs (comprising only the isolate SPR117) was identified as a potential new species in the genus Rhizorhapis (class Alphaproteobacteria) and was selected for further characterization. Phytopathogenicity tests showed that Rhizorhapis sp. strain SPR117 (ATCC TSD-228) is not pathogenic to lettuce, despite the only described species in this genus, Rhizorhapis suberifaciens, is causal agent of the lettuce corky root disease. The genome of the strain SPR117 was sequenced, assembled in 256 contigs, with a length of 4,419,522 bp and a GC content of 59.9%, and its further annotation revealed the presence of genes related to the resistance to arsenic, copper, iron, and mercury, among other metals. Therefore, the coupling of metataxonomics and culturing is a useful tool to obtain not only an improved description of bacterial communities in contaminated environments, but also to isolate microorganisms with bioremediation potential.
Collapse
Affiliation(s)
- José A Siles
- Department of Plant & Microbial Biology, University of California at Berkeley, Berkeley, CA, 94720, USA.
| | - Andrew J Hendrickson
- Department of Plant & Microbial Biology, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Norman Terry
- Department of Plant & Microbial Biology, University of California at Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
34
|
Gao Y, Gao W, Zhu H, Chen H, Yan S, Zhao M, Sun H, Zhang J, Zhang S. A Review on N-Doped Biochar for Oxidative Degradation of Organic Contaminants in Wastewater by Persulfate Activation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14805. [PMID: 36429520 PMCID: PMC9690619 DOI: 10.3390/ijerph192214805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The Persulfate-based advanced oxidation process is the most efficient and commonly used technology to remove organic contaminants in wastewater. Due to the large surface area, unique electronic properties, abundant N functional groups, cost-effectiveness, and environmental friendliness, N-doped biochars (NBCs) are widely used as catalysts for persulfate activation. This review focuses on the NBC for oxidative degradation of organics-contaminated wastewater. Firstly, the preparation and modification methods of NBCs were reviewed. Then the catalytic performance of NBCs and modified NBCs on the oxidation degradation of organic contaminants were discussed with an emphasis on the degradation mechanism. We further summarized the detection technologies of activation mechanisms and the structures of NBCs affecting the PS activation, followed by the specific role of the N configuration of the NBC on its catalytic capacity. Finally, several challenges in the treatment of organics-contaminated wastewater by a persulfate-based advanced oxidation process were put forward and the recommendations for future research were proposed for further understanding of the advanced oxidation process activated by the NBC.
Collapse
Affiliation(s)
- Yaxuan Gao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenran Gao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haonan Zhu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haoran Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shanshan Yan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Junjie Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials, School of Material Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shu Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Joint International Research Laboratory of Biomass Energy and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
35
|
Yin D, Zhou X, He T, Wu P, Ran S. Remediation of Mercury-Polluted Farmland Soils: A Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:661-670. [PMID: 35690951 DOI: 10.1007/s00128-022-03544-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) bioaccumulation in Hg-polluted farmlands poses high health risk for humans and wildlife, and remediation work is urgently needed. Here, we first summarize some specific findings related to the environmental process of Hg in Hg-polluted farmlands, and distinguish the main achievements and deficiencies of available remediation strategies in recent studies. Results demonstrate that farmland is a sensitive area with vibrant Hg biogeochemistry. Current remediation methods are relatively hysteretic whether in mechanism understanding or field application, and deficient for large-scale Hg-polluted farmlands in view of safety, efficiency, sustainability, and cost-effectiveness. New perspectives including environment-friendly functional materials, assisted phytoremediation and agronomic regulations are worthy of further study as their key roles in reducing Hg exposure risk and protecting agricultural sustainability.
Collapse
Affiliation(s)
- Deliang Yin
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Xian Zhou
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Pan Wu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
| | - Shu Ran
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
36
|
Su R, Wang Y, Huang S, Chen R, Wang J. Application for Ecological Restoration of Contaminated Soil: Phytoremediation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013124. [PMID: 36293698 PMCID: PMC9603173 DOI: 10.3390/ijerph192013124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 05/06/2023]
Abstract
Nowadays, with the rapid development of industry and agriculture, heavy metal pollution is becoming more and more serious, mainly deriving from natural and man-made sources [...].
Collapse
Affiliation(s)
- Rongkui Su
- College of Environmental Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
- PowerChina Zhongnan Engineering Corporation Limited, Changsha 410004, China
| | - Yangyang Wang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Correspondence: (Y.W.); (J.W.)
| | - Shunhong Huang
- College of Environmental Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Runhua Chen
- College of Environmental Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Jun Wang
- College of Environmental Science and Engineering, Central South University of Forestry & Technology, Changsha 410004, China
- Correspondence: (Y.W.); (J.W.)
| |
Collapse
|
37
|
Aguirre-Becerra H, Feregrino-Pérez AA, Esquivel K, Perez-Garcia CE, Vazquez-Hernandez MC, Mariana-Alvarado A. Nanomaterials as an alternative to increase plant resistance to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1023636. [PMID: 36304397 PMCID: PMC9593029 DOI: 10.3389/fpls.2022.1023636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 05/03/2023]
Abstract
The efficient use of natural resources without negative repercussions to the environment has encouraged the incursion of nanotechnology to provide viable alternatives in diverse areas, including crop management. Agriculture faces challenges due to the combination of different abiotic stresses where nanotechnology can contribute with promising applications. In this context, several studies report that the application of nanoparticles and nanomaterials positively affects crop productivity through different strategies such as green synthesis of nanoparticles, plant targeted protection through the application of nanoherbicides and nanofungicides, precise and constant supply of nutrients through nanofertilizers, and tolerance to abiotic stress (e.g., low or high temperatures, drought, salinity, low or high light intensities, UV-B, metals in soil) by several mechanisms such as activation of the antioxidant enzyme system that alleviates oxidative stress. Thus, the present review focuses on the benefits of NPs against these type of stress and their possible action mechanisms derived from the interaction between nanoparticles and plants, and their potential application for improving agricultural practices.
Collapse
Affiliation(s)
- Humberto Aguirre-Becerra
- Cuerpo Académico de Bioingeniería Básica y Aplicada, Facultad de Ingeniería - Campus Amazcala, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Ana Angélica Feregrino-Pérez
- Cuerpo Académico de Bioingeniería Básica y Aplicada, Facultad de Ingeniería - Campus Amazcala, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Karen Esquivel
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | | | - Ma. Cristina Vazquez-Hernandez
- Cuerpo Académico de Innovación en Bioprocesos Sustentables, Depto. De Ingenierías, Tecnológico Nacional de México en Roque, Guanajuato, Mexico
| | | |
Collapse
|
38
|
Valizadeh S, Lee SS, Choi YJ, Baek K, Jeon BH, Andrew Lin KY, Park YK. Biochar application strategies for polycyclic aromatic hydrocarbons removal from soils. ENVIRONMENTAL RESEARCH 2022; 213:113599. [PMID: 35679906 DOI: 10.1016/j.envres.2022.113599] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are known as a hazardous group of pollutants in the soil which causes many challenges to the environment. In this study, the potential of biochar (BC), as a carbonaceous material, is evaluated for the immobilization of PAHs in soils. For this purpose, various bonding mechanisms of BC and PAHs, and the strength of bonds are firstly described. Also, the effect of impressive criteria including BC physicochemical properties (such as surface area, porosity, particle size, polarity, aromaticity, functional group, etc., which are mostly the function of pyrolysis temperature), number of rings in PAHs, incubation time, and soil properties, on the extent and rate of PAHs immobilization by BC are explained. Then, the utilization of BC in collaboration with biological tools which simplifies further dissipation of PAHs in the soil is described considering detailed interactions among BC, microbes, and plants in the soil matrix. The co-effect of BC and biological remediation has been authenticated by previous studies. Moreover, recent technologies and challenges related to the application of BC in soil remediation are explained. The implementation of a combined BC-biological remediation method would provide excellent prospects for PAHs-contaminated soils.
Collapse
Affiliation(s)
- Soheil Valizadeh
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Sang Soo Lee
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Yong Jun Choi
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy (BK21 FOUR) and Soil Environment Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
39
|
Zhao X, Miao R, Guo M, Shang X, Zhou Y, Zhu J. Biochar enhanced polycyclic aromatic hydrocarbons degradation in soil planted with ryegrass: Bacterial community and degradation gene expression mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156076. [PMID: 35597344 DOI: 10.1016/j.scitotenv.2022.156076] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Biochar and ryegrass have been used in the remediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soils; however, the effects of different biochar application levels on the dissipation of PAHs, bacterial communities, and PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes in rhizosphere soil remain unclear. In this study, enzyme activity tests, real-time quantitative polymerase chain reaction (PCR), and high-throughput sequencing were performed to investigate the effects of different proportions of rape straw biochar (1%, 2%, and 4% (w/w)) on the degradation of PAHs, as well as the associated changes in the soil bacterial community and PAH-RHDα gene expression. The results revealed that biochar enhanced the rhizoremediation of PAH-contaminated soil and that 2% biochar-treated rhizosphere soil was the most effective in removing PAHs. Furthermore, urease activity, abundance and activity of total bacteria, and PAH-degrading bacteria were enhanced in soil that was amended with biochar and ryegrass. Additionally, the activity of 16S rDNA and PAH-RHDα gram-negative (GN) genes increased with increasing biochar dosage and had a positive correlation with the removal of PAHs. Biochar changed the rhizosphere soil bacterial composition and α-diversity, and promoted the growth of Pseudomonas and Zeaxanthinibacter. In addition, the relative abundance of Pseudomonas was positively correlated with PAH removal. These findings imply that rape straw biochar can enhance the rhizoremediation of PAH-contaminated soil by changing soil bacterial communities and stimulating the expression of PAH-RHDα GN genes. The 2% of rape straw biochar combined with ryegrass would be an effective method to remediate the PAH-contaminated soil.
Collapse
Affiliation(s)
- Xuyang Zhao
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Renhui Miao
- International Joint Research Laboratory for Global Change Ecology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Meixia Guo
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Xingtian Shang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
40
|
Mukherjee S, Sarkar B, Aralappanavar VK, Mukhopadhyay R, Basak BB, Srivastava P, Marchut-Mikołajczyk O, Bhatnagar A, Semple KT, Bolan N. Biochar-microorganism interactions for organic pollutant remediation: Challenges and perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119609. [PMID: 35700879 DOI: 10.1016/j.envpol.2022.119609] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Numerous harmful chemicals are introduced every year in the environment through anthropogenic and geological activities raising global concerns of their ecotoxicological effects and decontamination strategies. Biochar technology has been recognized as an important pillar for recycling of biomass, contributing to the carbon capture and bioenergy industries, and remediation of contaminated soil, sediments and water. This paper aims to critically review the application potential of biochar with a special focus on the synergistic and antagonistic effects on contaminant-degrading microorganisms in single and mixed-contaminated systems. Owing to the high specific surface area, porous structure, and compatible surface chemistry, biochar can support the proliferation and activity of contaminant-degrading microorganisms. A combination of biochar and microorganisms to remove a variety of contaminants has gained popularity in recent years alongside traditional chemical and physical remediation technologies. The microbial compatibility of biochar can be improved by optimizing the surface parameters so that toxic pollutant release is minimized, biofilm formation is encouraged, and microbial populations are enhanced. Biocompatible biochar thus shows potential in the bioremediation of organic contaminants by harboring microbial populations, releasing contaminant-degrading enzymes, and protecting beneficial microorganisms from immediate toxicity of surrounding contaminants. This review recommends that biochar-microorganism co-deployment holds a great potential for the removal of contaminants thereby reducing the risk of organic contaminants to human and environmental health.
Collapse
Affiliation(s)
- Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| | | | - Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, India
| | - B B Basak
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Anand 387310, India
| | | | - Olga Marchut-Mikołajczyk
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Ul. Stefanowskiego 2/22, 90-537, Łódź, Poland
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli, FI-50130, Finland
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
41
|
Sarma H, Narayan M, Peralta-Videa JR, Lam SS. Exploring the significance of nanomaterials and organic amendments - Prospect for phytoremediation of contaminated agroecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119601. [PMID: 35709913 DOI: 10.1016/j.envpol.2022.119601] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/10/2022] [Accepted: 06/07/2022] [Indexed: 05/22/2023]
Abstract
Emerging micro-pollutants have rapidly contaminated the agro-ecosystem, posing serious challenges to a sustainable future. The vast majority of them have infiltrated the soil and damaged agricultural fields and crops after being released from industry. These pollutants and their transformed products are also transported in vast quantities which further exacerbate the damage. Sustainable remediation techniques are warranted for such large amounts of contaminants. As aforementioned, many of them have been detected at very high concentrations in soil and water which adversely affect crop physiology by disrupting different metabolic processes. To combat this situation, nanomaterials and other organic amendments assisted phytoremediation ware considered as a viable alternative. It is a potent synergistic activity between the biological system and the supplied organic or nanomaterial material to eliminate emerging contaminants and micropollutants from crop fields. This can be effectively be applied to degraded crop fields and could potentially embody a green technology for sustainable agriculture.
Collapse
Affiliation(s)
- Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar(BTR), Assam, 783370, India; Institutional Biotech Hub, Department of Botany, Nanda Nath Saikia College, Titabar, Assam, 785630, India.
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79968, USA
| | - Jose R Peralta-Videa
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Ave., El Paso, TX, 79968, USA
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India
| |
Collapse
|
42
|
Bhat SA, Bashir O, Ul Haq SA, Amin T, Rafiq A, Ali M, Américo-Pinheiro JHP, Sher F. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. CHEMOSPHERE 2022; 303:134788. [PMID: 35504464 DOI: 10.1016/j.chemosphere.2022.134788] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/16/2022] [Accepted: 04/27/2022] [Indexed: 05/22/2023]
Abstract
Rapid industrialization, increased waste production and surge in agricultural activities, mining, contaminated irrigation water and industrial effluents contribute to the contamination of water resources due to heavy metal (HM) accumulation. Humans employ HM-contaminated resources to produce food, which eventually accumulates in the food chain. Decontamination of these valuable resources, as well as avoidance of additional contamination has long been needed to avoid detrimental health impacts. Phytoremediation is a realistic and promising strategy for heavy metal removal from polluted areas, based on the employment of hyper-accumulator plant species that are extremely tolerant to HMs present in the environment/soil. Green plants are used to remove, decompose, or detoxify hazardous metals in this technique. For soil decontamination, five types of phytoremediation methods have been used viz. phytostabilization, phytodegradation, rhizofiltration, phytoextraction and phytovolatilization. Traditional phytoremediation methods, on the other hand, have significant limits in terms of large-scale application, thus biotechnological efforts to modify plants for HM phytoremediation ways are being explored to improve the efficacy of plants as HM decontamination candidates. It is relatively a new technology that is widely regarded as economic, efficient and unique besides being environment friendly. New metal hyperaccumulators with high efficiency are being explored and employed for their use in phytoremediation and phytomining. Therefore, this review comprehensively discusses different strategies and biotechnological approaches for the removal of various HM containments from the environment, with emphasis on the advancements and implications of phytoremediation, along with their applications in cleaning up various toxic pollutants. Moreover, sources, effects of HMs and factors affecting phytoremediation of HMs metals have also been discussed.
Collapse
Affiliation(s)
- Shakeel Ahmad Bhat
- College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 190025, India
| | - Omar Bashir
- Department of Food Technology and Nutrition, Lovely Professional University, Punjab, 144402, India
| | - Syed Anam Ul Haq
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 190025, India
| | - Tawheed Amin
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 190025, India
| | - Asif Rafiq
- College of Temperate Sericulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Mirgund, Baramulla, Jammu and Kashmir, 193121, India
| | - Mudasir Ali
- College of Agricultural Engineering and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 190025, India
| | - Juliana Heloisa Pinê Américo-Pinheiro
- School of Engineering, São Paulo State University (UNESP), Ave. Brasil Sul, Number 56, 15385-000, Ilha Solteira, SP, Brazil; Brazil University, Street Carolina Fonseca, Number 584, 08230-030, São Paulo, SP, Brazil
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
43
|
Biochar, Ochre, and Manure Maturation in an Acidic Technosol Helps Stabilize As and Pb in Soil and Allows Its Vegetation by Salix triandra. ENVIRONMENTS 2022. [DOI: 10.3390/environments9070087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Past mining extraction activities still have a negative impact in the present time, the resulting metal(loid) contaminated soils affecting both the environment and human health. Assisted phytostabilization technology, combining soil conditioner application to immobilize metal(loid)s and plant growth to reduce erosion and leaching risks, is a useful strategy in the restoration of metal(loid) contaminated lands. However, contaminants will respond differently to a particular amendment, having their own specific characteristics. Therefore, in multi-contaminated soils, soil conditioner combination has been suggested as a good strategy for metal(loid) immobilization. In the present study, in a mesocosm experiment, organic (biochar and manure) and inorganic (ochre) amendments were evaluated in single and combined applications for their effect on metal(loid) stabilization and Salix triandra growth improvement, in an arsenic and lead highly contaminated soil. Specifically, the effects of these amendments on soil properties, metal(loid) behavior, and plant growth were evaluated after they aged in the soil for 6 months. Results showed that all amendments, except biochar alone, could reduce soil acidity, with the best outcomes obtained with the three amendments combined. The combination of the three soil conditioners has also led to reducing soil lead availability. However, only ochre, alone or combined with the other soil fertilizers, was capable of immobilizing arsenic. Moreover, amendment application enhanced plant growth, without affecting arsenic accumulation. On the contrary, plants grown on all the amended soils, except plants grown on soil added with manure alone, showed higher lead concentration in leaves, which poses a risk of return of lead into the soil when leaves will shed in autumn. Considering that the best plant growth improvement, together with the lowest increase in lead aerial accumulation, was observed in manure-treated soil, the addition of manure seems to have potential in the restoration of arsenic and lead contaminated soil.
Collapse
|
44
|
Zhang H, Jiang L, Wang H, Li Y, Chen J, Li J, Guo H, Yuan X, Xiong T. Evaluating the remediation potential of MgFe 2O 4-montmorillonite and its co-application with biochar on heavy metal-contaminated soils. CHEMOSPHERE 2022; 299:134217. [PMID: 35288182 DOI: 10.1016/j.chemosphere.2022.134217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
In this work, a novel and efficient magnesium ferrite-modified montmorillonite (MgFe2O4-MMT) compound was prepared. MgFe2O4-MMT and biochar were mixed at 0:10, 1:9, 3:7, 4:6, and 10:0 w/w combinations and were used for heavy metal immobilization in soil polluted with multiple heavy metals. MgFe2O4-MMT can significantly increase soil alkalinity, and it exhibited the most optimal effect in immobilization of heavy metals in soil. The amounts of Cd, Pb, Cu, and Zn that were extracted by the toxicity characteristic leaching procedure (TCLP) decreased by 58.4%, 50.3%, 42.9%, and 24.7%, respectively. MgFe2O4-MMT can immobilize heavy metals through electrostatic interactions and cation exchange processes. Although, the immobilization of potentially toxic elements by MgFe2O4-MMT and biochar was inferior to that by MgFe2O4-MMT. The combined application of MgFe2O4-MMT and biochar dramatically increased the diversity and richness of the soil bacterial community. The Chao1 index for M3B7 treatment group was 1.7 and 1.2 times higher than that for the control and MgFe2O4-MMT treatment groups, respectively. The combination of biochar and MgFe2O4-MMT might be a cost-effective and ecological remediation approach for mild Pb and Cd contamination.
Collapse
Affiliation(s)
- Hanyan Zhang
- School of Frontier Crossover Studies, Hunan University of Technology and Business, Changsha, 410205, PR China
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Yifu Li
- School of Hydraulic Engineering, Changsha University of Science & Technology, 410004, Changsha, PR China
| | - Jie Chen
- School of Frontier Crossover Studies, Hunan University of Technology and Business, Changsha, 410205, PR China
| | - Juanyong Li
- School of Frontier Crossover Studies, Hunan University of Technology and Business, Changsha, 410205, PR China
| | - Hai Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, 410205, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Ting Xiong
- School of Frontier Crossover Studies, Hunan University of Technology and Business, Changsha, 410205, PR China
- Institute of Digital Intelligence and Smart Society, Hunan University of Technology and Business, Changsha, 410205, PR China
| |
Collapse
|
45
|
Huang Y, Jiang M, Gao S, Wang W, Liu Z, Yuan R. Non-radical pathway dominated by singlet oxygen under high salinity condition towards efficient degradation of organic pollutants and inhibition of AOX formation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Huang H, Zheng Y, Wei D, Yang G, Peng X, Fan L, Luo L, Zhou Y. Efficient removal of pefloxacin from aqueous solution by acid-alkali modified sludge-based biochar: adsorption kinetics, isotherm, thermodynamics, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43201-43211. [PMID: 35091955 DOI: 10.1007/s11356-021-18220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
In this paper, one kind of acid-alkali modified sludge-based biochar (ASBC) was synthesized, characterized, and employed as adsorbent for the removal of pefloxacin. The characterization results showed that the specific surface area (SSA) of ASBC (53.381 m2/g) was significantly higher than that of SBC (24.411 m2/g). ASBC had a rougher surface, larger particle distribution, lower zero point charge, and richer functional groups (e.g., C-O and O-H) than SBC. The adsorption capacity of ASBC was 1.82 times than that of SBC. After 8 adsorption cycles in reuse experiment, the adsorption capacity of ASBC for pefloxacin still reached 144.08 mg/L, indicating that ASBC has good reusability. Static experiments showed that the optimal pH value was 6.0 in the adsorption of pefloxacin on SBC and ASBC. The result of adsorption kinetics indicated that the pseudo-second-order model could describe well the adsorption process. The Freundlich model was better than the Langmuir model to describe the adsorption of pefloxacin by ASBC, indicating that the adsorption process was mainly multilayer adsorption. Thermodynamic result showed that the adsorption of pefloxacin by ASBC was spontaneous and endothermic. The removal mechanism of pefloxacin by ASBC is mainly the substitution reaction and π-π EDA interaction. In summary, acid-alkali modified biochar is an effective adsorbent for pefloxacin in aqueous solution, and has great application prospects.
Collapse
Affiliation(s)
- Hongli Huang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yongxin Zheng
- Yueyang Academy of Agricultural Sciences, Yueyang, 414000, China
| | - Dongning Wei
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Guang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Xin Peng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lingjia Fan
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
47
|
Gao D, Li Y, Liang H. Biofilm carriers for anaerobic ammonium oxidation: Mechanisms, applications, and roles in mainstream systems. BIORESOURCE TECHNOLOGY 2022; 353:127115. [PMID: 35395366 DOI: 10.1016/j.biortech.2022.127115] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
The anaerobic ammonium oxidation (ANAMMOX) process was proposed as the most promising nitrogen removal process. Biofilm carriers were demonstrated to effectively enhance the anaerobic ammonium oxidating bacteria (AnAOB) retention. This paper reviews the effect of carrier properties on the AnAOB biofilm development according to the biofilm development process and the application state-of-art of three major kinds of conventional carriers, organic-based, inorganic-based carriers, and gel carriers, from the view of system performance and functional microorganisms. The carrier modification methods and purpose are thoroughly summarized and classified into three categories corresponding to various carrier defects. Four important aspects of the desirable carrier for the mainstream ANAMMOX process were proposed, including providing spatial configuration, enhancing the biomass retention, reinforcing the activity, and improving the growth environment, which needs to combine the advantages of organic and inorganic materials. Eventually, the future application directions of novel carriers for the ANAMMOX-based process were also highlighted.
Collapse
Affiliation(s)
- Dawen Gao
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Yuqi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Liang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
48
|
Role of SaPCR2 in Zn Uptake in the Root Elongation Zone of the Zn/Cd Hyperaccumulator Sedum alfredii. Life (Basel) 2022; 12:life12050768. [PMID: 35629434 PMCID: PMC9146221 DOI: 10.3390/life12050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Zn pollution is a potential toxicant for agriculture and the environment. Sedum alfredii is a Zn/Cd hyperaccumulator found in China and has been proven as a useful resource for the phytoremediation of Zn-contaminated sites. However, the molecular mechanism of Zn uptake in S. alfredii is limited. In this study, the function of SaPCR2 on Zn uptake in S. alfredii was identified by gene expression analysis, yeast function assays, Zn accumulation and root morphology analysis in transgenic lines to further elucidate the mechanisms of uptake and translocation of Zn in S. alfredii. The results showed that SaPCR2 was highly expressed in the root elongation zone of the hyperaccumulating ecotype (HE) S. alfredii, and high Zn exposure downregulated the expression of SaPCR2 in the HE S. alfredii root. The heterologous expression of SaPCR2 in yeast suggested that SaPCR2 was responsible for Zn influx. The overexpression of SaPCR2 in the non-hyperaccumulating ecotype (NHE) S. alfredii significantly increased the root uptake of Zn, but did not influence Mn, Cu or Fe. SR-μ-XRF technology showed that more Zn was distributed in the vascular buddle tissues, as well as in the cortex and epidermis in the transgenic lines. Root morphology was also altered after SaPCR2 overexpression, and a severe inhibition was observed. In the transgenic lines, the meristematic and elongation zones of the root were lower compared to the WT, and Zn accumulation in meristem cells was also reduced. These results indicate that SaPCR2 is responsible for Zn uptake, and mainly functions in the root elongation zone. This research on SaPCR2 could provide a theoretical basis for the use of genetic engineering technology in the modification of crops for their safe production and biological enhancement.
Collapse
|
49
|
Cheng X, Liu W, Zhang C, Chen X, Duan S, Fu H. Synthesis and electrospinning of multiscale‐ordered
PLA
/
LDH
@
AgGB
composite nanofibrous membrane for antibacterial and oil–water separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao‐Qiong Cheng
- Guizhou Norm University School of Materials and Architectural Engineering Guiyang People's Republic of China
| | - Wei Liu
- Guizhou Institutes of Technology School of Materials and Energy Engineering Guiyang People's Republic of China
| | - Chun Zhang
- Guizhou Institutes of Technology School of Materials and Energy Engineering Guiyang People's Republic of China
| | - Xiao‐Cheng Chen
- Guizhou Institutes of Technology School of Materials and Energy Engineering Guiyang People's Republic of China
| | - Shu‐Qian Duan
- Guizhou Norm University School of Materials and Architectural Engineering Guiyang People's Republic of China
| | - Hai Fu
- Guizhou Norm University School of Materials and Architectural Engineering Guiyang People's Republic of China
| |
Collapse
|
50
|
Li R, Zhang X, Wang G, Kong L, Guan Q, Yang R, Jin Y, Liu X, Qu J. Remediation of cadmium contaminated soil by composite spent mushroom substrate organic amendment under high nitrogen level. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128345. [PMID: 35149508 DOI: 10.1016/j.jhazmat.2022.128345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/09/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) contamination in soil poses a serious threat to ecological environment and crop quality, especially under high nitrogen level. Here, the efficiency of composite organic amendment (spent mushroom substrate and its biochar) on remediation of Cd contaminated soil under high nitrogen level has been studied through a 42 days' soil incubation experiment. The results showed: (i) the application of composite organic amendment minimized the repercussions of high nitrogen and significantly reduced the exchangeable Cd proportion by 28.3%-29.5%, especially for Ca(NO3)2 treatment; (ii) the application of composite organic amendment improved the physicochemical properties of soil, such as pH, CEC and organic matter content increased by 0.63-0.99 unit, 39.69%-45.00% and 7.77%-11.47%, and EC decreased by 16.21%-44.47% compared with non-amendment Cd-contaminated soil, respectively; (iii) the application of composite organic amendment significantly increased the soil enzyme activities and microbial biomass, among which urease activity was increased most by 12.06-16.42 mg·g-1·d-1, and the copy number of AOA was decreased by 30.6%- 92.0%, and the copy number of AOB was increased most by about 45 times. In brief, the composite organic amendment can alleviate the adverse effects of Cd and nitrogen on the soil, but its long-term efficacy needs to be verified in further field study.
Collapse
Affiliation(s)
- Rui Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xu Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guoliang Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Linghui Kong
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qingkai Guan
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Rui Yang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Jin
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xuesheng Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Juanjuan Qu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|