1
|
Garg S, Behera S, Ruiz HA, Kumar S. A Review on Opportunities and Limitations of Membrane Bioreactor Configuration in Biofuel Production. Appl Biochem Biotechnol 2023; 195:5497-5540. [PMID: 35579743 DOI: 10.1007/s12010-022-03955-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/02/2022] [Indexed: 12/13/2022]
Abstract
Biofuels are a clean and renewable source of energy that has gained more attention in recent years; however, high energy input and processing cost during the production and recovery process restricted its progress. Membrane technology offers a range of energy-saving separation for product recovery and purification in biorefining along with biofuel production processes. Membrane separation techniques in combination with different biological processes increase cell concentration in the bioreactor, reduce product inhibition, decrease chemical consumption, reduce energy requirements, and further increase product concentration and productivity. Certain membrane bioreactors have evolved with the ability to deal with different biological production and separation processes to make them cost-effective, but there are certain limitations. The present review describes the advantages and limitations of membrane bioreactors to produce different biofuels with the ability to simplify upstream and downstream processes in terms of sustainability and economics.
Collapse
Affiliation(s)
- Shruti Garg
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India
- Department of Microbiology, Guru Nanak Dev University, Grand Trunk Road, Amritsar, Punjab, 143040, India
| | - Shuvashish Behera
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India.
- Department of Alcohol Technology and Biofuels, Vasantdada Sugar Institute, Manjari (Bk.), Pune, 412307, India.
| | - Hector A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280, Saltillo, Coahuila, Mexico
| | - Sachin Kumar
- Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144601, India.
| |
Collapse
|
2
|
Applications of ionic liquids for the biochemical transformation of lignocellulosic biomass into biofuels and biochemicals: A critical review. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
3
|
Perstraction: A Membrane-Assisted Liquid–Liquid Extraction of PFOA from Water. Processes (Basel) 2023. [DOI: 10.3390/pr11010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This study represents a first time that perstraction was assessed as a process to remove perfluorooctanoic acid (PFOA) from water. In the perstraction process, PFOA permeates through a membrane from water to a solvent. The membrane used in this study was polydimethylsiloxane (PDMS). The experimental approach included the following: (1) measurement of partition coefficients for PFOA between water and selected solvents; (2) determination of solubility and diffusivity of the solvents in PDMS; (3) determination of the uptake of PFOA in PDMS; (4) determination of the effects of selected particles imbedded in the PDMS on PFOA uptake and solvent absorption; and (5) demonstration of the perstraction process to remove PFOA from water. PFOA preferentially partitioned to alcohols over water. In addition, ZnO and CuO particles in PDMS significantly enhanced the rate at which PFOA was absorbed in PDMS from deionized water due to ionic interactions. The perstraction of PFOA from deionized water into hexanol was demonstrated. However, perstraction was not successful at removing PFOA from tap water. While the application of perstraction to removing PFOA from water is limited, the idea was demonstrated and information contained within this manuscript is new.
Collapse
|
4
|
Xia Y, Yang C, Liu X, Wang G, Xiong Z, Song X, Yang Y, Zhang H, Ai L. Enhancement of triterpene production via in situ extractive fermentation of Sanghuangporus vaninii YC-1. Biotechnol Appl Biochem 2022; 69:2561-2572. [PMID: 34967056 DOI: 10.1002/bab.2305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022]
Abstract
There have been many studies on the activities and polysaccharide production of Sanghuangporus vaninii. However, few studies have looked at triterpene production from S. vaninii using liquid-state fermentation. A method for enhancing the production of triterpenes by in situ extractive fermentation (ISEF) was studied. Eight solvents were investigated as extractants for triterpene production in the ISEF system. The results showed that using vegetable oil as an extractant significantly increased the yield of total triterpenes and biomass of S. vaninii YC-1, reaching 18.98 ± 0.71 and 44.67 ± 2.21 g/L, respectively. In 5 L fermenter experiments, the added vegetable oil improved the dissolved oxygen condition of the fermentation broth and promoted the growth of S. vaninii YC-1. Furthermore, adding vegetable oil increased the expression of fatty acid synthesis-related genes such as FAD2 and SCD, thereby increasing the synthesis of unsaturated fatty acids in the cell membrane of S. vaninii YC-1. Therefore, the cell membrane permeability of S. vaninii YC-1 increased by 19%. Our results indicated that vegetable oil increased the permeability of S. vaninii YC-1 cell membranes to promote the production of total triterpenes. The use of vegetable oil as an extractant was thus effective in increasing the yield of triterpenes in the ISEF system.
Collapse
Affiliation(s)
- Yongjun Xia
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Caiyun Yang
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiaofeng Liu
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Yijin Yang
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhang
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Mutto A, Mahawer K, Shukla A, Gupta SK. Understanding butanol recovery and coupling effects in pervaporation of Acetone-Butanol-Ethanol (ABE) solutions: A modelling and experimental study. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Abstract
Abstract
In the last decade, there was observed a growing demand for both n-butanol as a potential fuel or fuel additive, and propylene as the only raw material for production of alcohol and other more bulky propylene chemical derivatives with faster growing outputs (polymers, propylene oxide, and acrylic acid). The predictable oilfield depletion and the European Green Deal adoption stimulated interest in alternative processes for n-butanol production, especially those involving bio-based materials. Their commercialization will promote additional market penetration of n-butanol for its application as a basic chemical. We analyze briefly the current status of two most advanced bio-based processes, i.e. ethanol–to-n-butanol and acetone–butanol–ethanol (ABE) fermentation. In the second part of the review, studies of n-butanol and ABE conversion to valuable products are considered with an emphasis on the most perspective catalytic systems and variants of the future processes realization.
Collapse
Affiliation(s)
- Larisa Pinaeva
- Department of Technology of Catalytic Processes, Boreskov Institute of Catalysis , Novosibirsk 630090 , Russia
| | - Alexandr Noskov
- Department of Technology of Catalytic Processes, Boreskov Institute of Catalysis , Novosibirsk 630090 , Russia
| |
Collapse
|
7
|
Ferreira Dos Santos Vieira C, Duzi Sia A, Maugeri Filho F, Maciel Filho R, Pinto Mariano A. Isopropanol-butanol-ethanol production by cell-immobilized vacuum fermentation. BIORESOURCE TECHNOLOGY 2022; 344:126313. [PMID: 34798259 DOI: 10.1016/j.biortech.2021.126313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The Isopropanol-Butanol-Ethanol productivity by solventogenic clostridia can increase when cells are immobilized on low-cost, renewable fibrous materials; however, butanol inhibition imposes the need for dilute sugar solutions (less than40 g/L). To alleviate this problem, the in-situ vacuum product recovery technique was applied to recover IBE in repeated-batch cultivation of Clostridium beijerinckii DSM 6423 immobilized on sugarcane bagasse. Five repeated batch cycles were conducted in a 7-L bioreactor containing P2 medium (∼60 g/L glucose) and bagasse packed in 3D-printed concentric annular baskets. In three cycles, glucose was consumed by 86% on average, the IBE productivity was 0.35 g/L∙h or 30% and 17% higher relative to free- and immobilized (without vacuum)-cell cultures. Notably, the product stream contained 45 g/L IBE. However, the fermentation was unsatisfactory in two cycles. Finally, by inserting a fibrous bed with hollow annuli in a vacuum fermentation, this work introduces the concept of an internal-loop boiling-driven fibrous-bed bioreactor.
Collapse
Affiliation(s)
- Carla Ferreira Dos Santos Vieira
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Augusto Duzi Sia
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Francisco Maugeri Filho
- Bioprocess and Metabolic Engineering Laboratory (LEMeB), School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rubens Maciel Filho
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Adriano Pinto Mariano
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
8
|
Comparative genomic analysis of hyper-ammonia producing Acetoanaerobium sticklandii DSM 519 with purinolytic Gottschalkia acidurici 9a and pathogenic Peptoclostridium difficile 630. Genomics 2021; 113:4196-4205. [PMID: 34780936 DOI: 10.1016/j.ygeno.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/18/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Acetoanaerobium sticklandii DSM519 (CST) is a hype-ammonia producing non-pathogenic anaerobe that can use amino acids as important carbon and energy sources through the Stickland reactions. Biochemical aspects of this organism have been extensively studied, but systematic studies addressing its metabolic discrepancy remain scant. In this perspective, we have intensively analyzed its genomic and metabolic characteristics to comprehend the evolutionary conservation of amino acid catabolism by a comparative genomic approach. The whole-genome data indicated that CST has shown a phylogenomic similarity with hyper-ammonia producing, purinolytic, and proteolytic pathogenic Clostridia. CST has shown to common genomic context sharing across the purinolytic Gottschalkia acidurici 9a and pathogenic Peptoclostridium difficile 630. Genome syntenic analysis described that syntenic orthologs might be originated from the recent ancestor at a slow evolution rate and syntenic-out paralogs evolved from either CDF or CAC via α-event and β-event. Collinearity of either gene orders or gene families was adjusted with syntenic out-paralogs across these genomes. The genome-wide metabolic analysis predicted 11 unique putative metabolic subsystems from the CST genome for amino acid catabolism and hydrogen production. The in silico analysis of our study revealed that a characteristic system for amino acid catabolism-directed biofuel synthesis might have slowly evolved and established as a core genomic content of CST.
Collapse
|
9
|
Pakzati M, Abedini H, Hamoule T, Shariati A. Equilibrium and dynamic investigation of butanol adsorption from acetone–butanol–ethanol (ABE) model solution using a vine shoot based activated carbon. ADSORPTION 2021. [DOI: 10.1007/s10450-021-00345-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Cabezas R, Duran S, Zurob E, Plaza A, Merlet G, Araya-Lopez C, Romero J, Quijada-Maldonado E. Development of silicone-coated hydrophobic deep eutectic solvent-based membranes for pervaporation of biobutanol. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Iyyappan J, Bharathiraja B, Vaishnavi A, Prathiba S. Overview of Current Developments in Biobutanol Production Methods and Future Perspectives. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2290:3-21. [PMID: 34009579 DOI: 10.1007/978-1-0716-1323-8_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Renewable biobutanol production is receiving more attention toward substituting fossil-based nonrenewable fuels. Biobutanol is recognized as the top most biofuel with extraordinary properties as compared with gasoline. The demand for biobutanol production is increasing enormously due to application in various industries as chemical substituent. Biobutanol production technology has attracted many researchers toward implementation of replacing cost-effective substrate and easy method to recover from the fermentation broth. Sugarcane bagasse, algal biomass, crude glycerol, and lignocellulosic biomass are potential cost-effective substrates which could replace consistent glucose-based substrates. The advantages and limitations of these substrates have been discussed in this chapter. Moreover, finding the integrated biobutanol recovery methods is an important factor parameter in production of biobutanol. This chapter also concentrated on possibilities and drawbacks of obtainable integrated biobutanol recovery methods. Thus, successful process involving cost-effective substrate and biobutanol recovery methods could help to implementation of biobutanol production industry. Overall, this chapter has endeavored to increase the viability of industrial production of biobutanol.
Collapse
Affiliation(s)
- J Iyyappan
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| | - B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India.
| | - A Vaishnavi
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| | - S Prathiba
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| |
Collapse
|
12
|
Jiménez-Bonilla P, Feng J, Wang S, Zhang J, Wang Y, Blersch D, de-Bashan LE, Gaillard P, Guo L, Wang Y. Identification and Investigation of Autolysin Genes in Clostridium saccharoperbutylacetonicum Strain N1-4 for Enhanced Biobutanol Production. Appl Environ Microbiol 2021; 87:e02442-20. [PMID: 33514516 PMCID: PMC8091608 DOI: 10.1128/aem.02442-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/14/2021] [Indexed: 11/20/2022] Open
Abstract
Biobutanol is a valuable biochemical and one of the most promising biofuels. Clostridium saccharoperbutylacetonicum N1-4 is a hyperbutanol-producing strain. However, its strong autolytic behavior leads to poor cell stability, especially during continuous fermentation, thus limiting the applicability of the strain for long-term and industrial-scale processes. In this study, we aimed to evaluate the role of autolysin genes within the C. saccharoperbutylacetonicum genome related to cell autolysis and further develop more stable strains for enhanced butanol production. First, putative autolysin-encoding genes were identified in the strain based on comparison of amino acid sequence with homologous genes in other strains. Then, by overexpressing all these putative autolysin genes individually and characterizing the corresponding recombinant strains, four key genes were pinpointed to be responsible for significant cell autolysis activities. Further, these key genes were deleted using CRISPR-Cas9. Fermentation characterization demonstrated enhanced performance of the resultant mutants. Results from this study reveal valuable insights concerning the role of autolysins for cell stability and solvent production, and they provide an essential reference for developing robust strains for enhanced biofuel and biochemical production.IMPORTANCE Severe autolytic behavior is a common issue in Clostridium and many other microorganisms. This study revealed the key genes responsible for the cell autolysis within Clostridium saccharoperbutylacetonicum, a prominent platform for biosolvent production from lignocellulosic materials. The knowledge generated in this study provides insights concerning cell autolysis in relevant microbial systems and gives essential references for enhancing strain stability through rational genome engineering.
Collapse
Affiliation(s)
- Pablo Jiménez-Bonilla
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
- School of Chemistry, National University (UNA), Heredia, Costa Rica
| | - Jun Feng
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| | - Shangjun Wang
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| | - Jie Zhang
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| | - Yifen Wang
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
- Center for Bioenergy and Bioproducts, Auburn University, Auburn, Alabama, USA
| | - David Blersch
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
| | - Luz Estela de-Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), La Paz, Mexico
- The Bashan Institute of Science, Auburn, Alabama, USA
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Philippe Gaillard
- Statistical Consulting Center, Mathematics and Statistics Department, Auburn University, Auburn, Alabama, USA
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA
- Center for Bioenergy and Bioproducts, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
13
|
Jiménez-Bonilla P, Zhang J, Wang Y, Blersch D, de-Bashan LE, Guo L, Wang Y. Enhancing the tolerance of Clostridium saccharoperbutylacetonicum to lignocellulosic-biomass-derived inhibitors for efficient biobutanol production by overexpressing efflux pumps genes from Pseudomonas putida. BIORESOURCE TECHNOLOGY 2020; 312:123532. [PMID: 32502888 DOI: 10.1016/j.biortech.2020.123532] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Furan aldehydes and phenolic compounds generated during biomass pretreatment can inhibit fermentation for biofuel production. Efflux pumps actively transport small molecules out of cells, thus sustaining normal microbial metabolism. Pseudomonas putida has outstanding tolerance to butanol and other small molecules, and we hypothesize that its efflux pump could play essential roles for such robustness. Here, we overexpressed efflux pump genes from P. putida to enhance tolerance of hyper-butanol producing Clostridium saccharoperbutylacetonicum to fermentation inhibitors. Interestingly, overexpression of the whole unit resulted in decreased tolerance, while overexpression of the subunit (srpB) alone exerted significant enhanced robustness of the strain. Compared to the control, the engineered strain had enhanced capability to grow in media containing 17% more furfural or 50% more ferulic acid, and produced ~14 g/L butanol (comparable to fermentation under regular conditions without inhibitors). This study provided valuable reference for boosting microbial robustness towards efficient biofuel production from lignocellulosic materials.
Collapse
Affiliation(s)
- Pablo Jiménez-Bonilla
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA; School of Chemistry, National University (UNA), Heredia, Costa Rica
| | - Jie Zhang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Yifen Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA; Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL 36849, USA
| | - David Blersch
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Luz-Estela de-Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, La Paz, B.C.S. 23096, Mexico; The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL 36830, USA; Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA; Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
14
|
Cheng C, Yang D, Bao M, Xue C. Spray‐coated
PDMS
/
PVDF
composite membrane for enhanced butanol recovery by pervaporation. J Appl Polym Sci 2020. [DOI: 10.1002/app.49738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chi Cheng
- School of Bioengineering Dalian University of Technology Dalian China
| | - Decai Yang
- School of Bioengineering Dalian University of Technology Dalian China
| | - Meiting Bao
- School of Bioengineering Dalian University of Technology Dalian China
| | - Chuang Xue
- School of Bioengineering Dalian University of Technology Dalian China
| |
Collapse
|
15
|
Use of unconventional mixed Acetone-Butanol-Ethanol solvents for anthocyanin extraction from Purple-Fleshed sweetpotatoes. Food Chem 2020; 314:125959. [DOI: 10.1016/j.foodchem.2019.125959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 11/08/2019] [Accepted: 11/25/2019] [Indexed: 11/24/2022]
|
16
|
Cheng C, Liu F, Yang HK, Xiao K, Xue C, Yang ST. High-Performance n-Butanol Recovery from Aqueous Solution by Pervaporation with a PDMS Mixed Matrix Membrane Filled with Zeolite. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chi Cheng
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Fangfang Liu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hopen K. Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kaijun Xiao
- College of Light Industry and Food Science, South China University of Technology, Guangdong 510641, China
| | - Chuang Xue
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
17
|
Vincent RH, Parent JS, Daugulis AJ. Using poly(vinyldodecylimidazolium bromide) for the in-situ product recovery of n-butanol. Biotechnol Prog 2019; 36:e2926. [PMID: 31587514 DOI: 10.1002/btpr.2926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
The mitigation of end-product inhibition during the biosynthesis of n-butanol is demonstrated for an in-situ product recovery (ISPR) system employing a poly(ionic liquid) (PIL) absorbent. The thermodynamic affinity of poly(vinyldodecylimidazolium bromide) [P(VC12 ImBr)] for n-butanol, acetone and ethanol versus water was measured at conditions experienced in a typical acetone-ethanol-butanol (ABE) fermentation. In addition to providing a high n-butanol partition coefficient (PC = 6.5) and selectivity (αBuOH/water = 46), P(VC12 ImBr) is shown to be biocompatible with Saccharomyces cerevisiae and Clostridium acetobutylicum. Furthermore, the diffusivity of n-butanol in a hydrated PIL provides absorption rates that support ISPR applications. Using a 5 wt% PIL phase fraction relative to the aqueous phase mass, P(VC12 ImBr) improved the volumetric productivity of a batch ABE ISPR process by 31% relative to a control fermentation. The concentration of n-butanol in the P(VC12 ImBr) phase was sufficient to increase the alcohol concentration from 1.5 wt% in the fermentation medium to 25 wt% in the saturated PIL, thereby facilitating downstream n-butanol recovery.
Collapse
Affiliation(s)
- Rachel H Vincent
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - J Scott Parent
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Andrew J Daugulis
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
18
|
Dos Santos Vieira CF, Maugeri Filho F, Maciel Filho R, Pinto Mariano A. Acetone-free biobutanol production: Past and recent advances in the Isopropanol-Butanol-Ethanol (IBE) fermentation. BIORESOURCE TECHNOLOGY 2019; 287:121425. [PMID: 31085056 DOI: 10.1016/j.biortech.2019.121425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Production of butanol for fuel via the conventional Acetone-Butanol-Ethanol fermentation has been considered economically risky because of a potential oversupply of acetone. Alternatively, acetone is converted into isopropanol by specific solventogenic Clostridium species in the Isopropanol-Butanol-Ethanol (IBE) fermentation. This route, although less efficient, has been gaining attention because IBE mixtures are a potential fuel. The present work is dedicated to reviewing past and recent advances in microorganisms, feedstock, and fermentation equipment for IBE production. In our analysis we demonstrate the importance of novel engineered IBE-producing Clostridium strains and cell retention systems to decrease the staggering number of fermentation tanks required by IBE plants equipped with conventional technology. We also summarize the recent progress on recovery techniques integrated with fermentation, especially gas stripping. In addition, we assessed ongoing pilot-plant efforts that have been enabling IBE production from woody feedstock.
Collapse
Affiliation(s)
- Carla Ferreira Dos Santos Vieira
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Francisco Maugeri Filho
- Bioprocess and Metabolic Engineering Laboratory (LEMeB), School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rubens Maciel Filho
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Adriano Pinto Mariano
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
19
|
El-Dalatony MM, Saha S, Govindwar SP, Abou-Shanab RA, Jeon BH. Biological Conversion of Amino Acids to Higher Alcohols. Trends Biotechnol 2019; 37:855-869. [DOI: 10.1016/j.tibtech.2019.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/21/2022]
|
20
|
Nimbalkar P, Khedkar MA, Chavan PV, Bankar SB. Enhanced Biobutanol Production in Folic Acid-Induced Medium by Using Clostridium acetobutylicum NRRL B-527. ACS OMEGA 2019; 4:12978-12982. [PMID: 31460424 PMCID: PMC6690572 DOI: 10.1021/acsomega.9b00583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/18/2019] [Indexed: 05/05/2023]
Abstract
The conventional acetone-butanol-ethanol fermentation process suffers from several key hurdles viz. low solvent titer, insufficient yield and productivity, and solvent intolerance which largely affect butanol commercialization. To counteract these issues, the effect of stimulator, namely, folic acid was investigated in the present study to improve butanol titer. Folic acid is involved in biosynthesis of a diverse range of cellular components, which subsequently alter the amino acid balance. Therefore, different concentrations of folic acid were screened, and 10 mg/L supplementation resulted in a maximum butanol production of 10.78 ± 0.09 g/L with total solvents of 18.91 ± 0.21 g/L. Folic acid addition at different time intervals was also optimized to get additional improvements in final butanol concentration. Overall, folic acid supplementation resulted in two-fold increase in butanol concentration and thus could be considered as a promising strategy to enhance solvent titers.
Collapse
Affiliation(s)
- Pranhita
R. Nimbalkar
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16100, Aalto FI-00076, Finland
- Department
of Chemical Engineering, Bharati Vidyapeeth
Deemed University College of Engineering, Pune 411043, India
| | - Manisha A. Khedkar
- Department
of Chemical Engineering, Bharati Vidyapeeth
Deemed University College of Engineering, Pune 411043, India
| | - Prakash V. Chavan
- Department
of Chemical Engineering, Bharati Vidyapeeth
Deemed University College of Engineering, Pune 411043, India
- E-mail: . Phone: +91-020-24107390. Fax: +91-020-24372998 (P.V.C.)
| | - Sandip B. Bankar
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O.
Box 16100, Aalto FI-00076, Finland
- E-mail: , . Phone: +358 505777898. Fax: +358 9462373 (S.B.B.)
| |
Collapse
|
21
|
Ramos JL, Duque E. Twenty-first-century chemical odyssey: fuels versus commodities and cell factories versus chemical plants. Microb Biotechnol 2019; 12:200-209. [PMID: 30793487 PMCID: PMC6389845 DOI: 10.1111/1751-7915.13379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/23/2019] [Accepted: 02/01/2019] [Indexed: 12/31/2022] Open
Abstract
The harmful effects of pollution from the massive and widespread use of fossil fuels have led various organizations and governments to search for alternative energy sources. To address this, a new energy bioprocess is being developed that utilizes non-edible lignocellulose - the only sustainable source of organic carbon in nature. In this mini-review, we consider the potential use of synthetic biology to develop new-to-nature pathways for the biosynthesis of chemicals that are currently synthesized using classical industrial approaches. The number of industrial processes based on starch or lignocellulose is still very modest. Advances in the area require the development of more efficient approaches to deconstruct plant materials, better exploitation of the catalytic potential of prokaryotes and lower eukaryotes and the identification of new and useful genes for product synthesis. Further research and progress is urgently needed in order for government and industry to achieve the major milestone of transitioning 30% of the total industry to renewable sources by 2050.
Collapse
Affiliation(s)
- Juan L. Ramos
- CSIC – Estación Experimental del Zaidínc/Profesor Albareda 118008GranadaSpain
| | - Estrella Duque
- CSIC – Estación Experimental del Zaidínc/Profesor Albareda 118008GranadaSpain
| |
Collapse
|
22
|
The draft genome sequence of Clostridium sp. strain CT7, an isolate capable of producing butanol but not acetone and 1,3-propanediol from crude glycerol. 3 Biotech 2019; 9:63. [PMID: 30729087 DOI: 10.1007/s13205-019-1598-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/25/2019] [Indexed: 10/27/2022] Open
Abstract
A solventogenic Clostridium sp. strain CT7 which could utilize glycerol directly to produce high yields of butanol was isolated. In the presence of crude glycerol, strain CT7 synthesized butanol through a unique butanol-ethanol (BE) fermentation pathway in which acetone and 1,3-propanediol (1,3-PDO) were not produced. The genome of strain CT7 which has a G + C content of 30.3% was estimated to be 5.99 Mb and contained 4319 putative Open Reading Frames (ORF). The putative annotated genes, which play major roles in BE production from crude glycerol, included glycerol dehydrogenase gene (gdh), acetoacetyl-CoA transferase gene (ctfA/B), and bifunctional alcohol and aldehyde dehydrogenase gene (adhE). In addition, non-typical BE production is not coupled to 1,3-propanediol formation, which may due to the defect of 1, 3-PDO dehydrogenase gene (dhaT).
Collapse
|
23
|
Xin F, Dong W, Zhang W, Ma J, Jiang M. Biobutanol Production from Crystalline Cellulose through Consolidated Bioprocessing. Trends Biotechnol 2019; 37:167-180. [DOI: 10.1016/j.tibtech.2018.08.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 01/08/2023]
|
24
|
Lee SY, Kim HU, Chae TU, Cho JS, Kim JW, Shin JH, Kim DI, Ko YS, Jang WD, Jang YS. A comprehensive metabolic map for production of bio-based chemicals. Nat Catal 2019. [DOI: 10.1038/s41929-018-0212-4] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
BIOBUTANOL ACCUMULATION USING ALTERNATIVE SUBSTRATES BY CULTIVATION OF Clostridium acetobutylicum STRAINS. BIOTECHNOLOGIA ACTA 2017. [DOI: 10.15407/biotech10.05.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|