Heo JB, Yun HR, Lee YS, Chung CH. Strategic biomodification for raw plant-based pretreatment biorefining toward sustainable chemistry.
Crit Rev Biotechnol 2023;
43:870-883. [PMID:
35968908 DOI:
10.1080/07388551.2022.2092715]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/16/2022] [Accepted: 05/08/2022] [Indexed: 11/03/2022]
Abstract
Plant-based pretreatment biorefining is the initial triggering process in biomass-conversion to bio-based chemical products. In view of chemical sustainability, the raw plant-based pretreatment biorefining process is more favorable than the fossil-based one. Its direct use contributes to reducing CO2 emissions and the production cost of the target products by eliminating costly steps, such as the separation and purification of intermediates. Three types of feedstock plant resources have been utilized as raw plant feedstock sources, such as: lignocellulosic, starchy, and inulin-rich feedstock plants. These plant sources can be directly used for bio-based chemical products. To enhance the efficiency of their pretreatment biorefining process, well-designed biomodification schemes are discussed in this review to afford important information on useful biomodification approaches. For lignocellulosic feedstock plants, the enzymes and regulatory elements involved in lignin reduction are discussed using: COMT, GAUT4, CSE, PvMYB4 repressor, etc. For inulin-rich feedstock plants, 1-SST, 1-FFT, 1-FEH, and endoinulinase are illustrated in relation with the reduction of chain length of inulin polymer. For starchy feedstock plants, their biomodification is targeted to enhancing the depolymerization efficiency of starch to glucose monomer units. For this biomodification target, six candidates are discussed. These are SBE I, SBE IIa, SBE IIb, GBSS I, PTSTI, GWD 1, and PTSTI. The biomodification strategies discussed here promise to be conducive to enhancing the efficiency of the plant-based pretreatment biorefining process.
Collapse