1
|
Todorov SD, Tagg J, Algburi A, Tiwari SK, Popov I, Weeks R, Mitrokhin OV, Kudryashov IA, Kraskevich DA, Chikindas ML. The Hygienic Significance of Microbiota and Probiotics for Human Wellbeing. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10419-9. [PMID: 39688648 DOI: 10.1007/s12602-024-10419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
The human body can be viewed as a combination of ecological niches inhabited by trillions of bacteria, viruses, fungi, and parasites, all united by the microbiota concept. Human health largely depends on the nature of these relationships and how they are built and maintained. However, personal hygiene practices have historically been focused on the wholesale elimination of pathogens and "hygiene-challenging microorganisms" without considering the collateral damage to beneficial and commensal species. The microbiota can vary significantly in terms of the qualitative and quantitative composition both between different people and within one person during life, and the influence of various environmental factors, including age, nutrition, bad habits, genetic factors, physical activity, medication, and hygienic practices, facilitates these changes. Disturbance of the microbiota is a predisposing factor for the development of diseases and also greatly influences the course and severity of potential complications. Therefore, studying the composition of the microbiota of the different body systems and its appropriate correction is an urgent problem in the modern world. The application of personal hygiene products or probiotics must not compromise health through disruption of the healthy microbiota. Where changes in the composition or metabolic functions of the microbiome may occur, they must be carefully evaluated to ensure that essential biological functions are unaffected. As such, the purpose of this review is to consider the microbiota of each of the "ecological niches" of the human body and highlight the importance of the microbiota in maintaining a healthy body as well as the possibility of its modulation through the use of probiotics for the prevention and treatment of certain human diseases.
Collapse
Affiliation(s)
- Svetoslav D Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos E Nutrição Experimental, Food Research Center, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
- Instituto Politécnico de Viana Do Castelo, 4900-347, Viana Do Castelo, Portugal.
| | - John Tagg
- Blis Technologies, South Dunedin, 9012, New Zealand
| | - Ammar Algburi
- Department of Microbiology, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1344002, Rostov-On-Don, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Olimpijskij Ave., 1, Federal Territory Sirius, Sirius, 354340, Russia
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University-Campus Venlo, Villafloraweg, 1, 5928 SZ, Venlo, The Netherlands
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Oleg V Mitrokhin
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Ilya A Kudryashov
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Denis A Kraskevich
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Gagarina Sq., 1344002, Rostov-On-Don, Russia.
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, 119435, Russia.
| |
Collapse
|
2
|
Tian J, Wei S, Liang W, Wang G. Enhancing levan biosynthesis by destroying the strongly acidic environment caused by membrane-bound glucose dehydrogenase (mGDH) in Gluconobacter sp. MP2116. Synth Syst Biotechnol 2024; 10:68-75. [PMID: 39263351 PMCID: PMC11388042 DOI: 10.1016/j.synbio.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024] Open
Abstract
Levan produced by Gluconobacter spp. has great potential in biotechnological applications. However, Gluconobacter spp. can synthesize organic acids during fermentation, resulting in environmental acidification. Few studies have focused on the effects of environmental acidification on levan synthesis. This study revealed that the organic acids, mainly gluconic acid (GA) and 2-keto-gluconic acid (2KGA) secreted by Gluconobacter sp. MP2116 created a highly acidic environment (pH < 3) that inhibited levan biosynthesis. The levansucrase derived from strain MP2116 had high enzyme activity at pH 4.0 ∼ pH 6.5. When the ambient pH was less than 3, the enzyme activity decreased by 67 %. Knocking out the mgdh gene of membrane-bound glucose dehydrogenase (mGDH) in the GA and 2KGA synthesis pathway in strain MP2116 eliminated the inhibitory effect of high acid levels on levansucrase function. As a result, the levan yield increased from 7.4 g/l (wild-type) to 18.8 g/l (Δmgdh) during fermentation without pH control. This study provides a new strategy for improving levan production by preventing the inhibition of polysaccharide synthesis by environmental acidification.
Collapse
Affiliation(s)
- Junjie Tian
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Shumin Wei
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| | - Wenxing Liang
- College of Plant Health and Medicine, The Key Laboratory of Integrated Crop Pest Management of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guangyuan Wang
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Changcheng Road, No.700, Qingdao, 266109, China
| |
Collapse
|
3
|
Veljković M, Banjanac K, Milivojević A, Ćorović M, Simović M, Bezbradica D. Production of prebiotic enriched maple syrup through enzymatic conversion of sucrose into fructo-oligosaccharides. Food Chem 2024; 449:139180. [PMID: 38579650 DOI: 10.1016/j.foodchem.2024.139180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024]
Abstract
Maple syrup, a popular natural sweetener has a high content of sucrose, whose consumption is linked to different health issues such as obesity and diabetes. Hence, within this paper, the conversion of sucrose to prebiotics (fructo-oligosaccharides, FOS) was proposed as a promising approach to obtaining a healthier, value-added product. Enzymatic conversion was optimized with respect to key experimental factors, and thereafter derived immobilized preparation of fructosyltransferase (FTase) from Pectinex® Ultra SP-L (FTase-epoxy Purolite, 255 IU/g support) was successfully utilized to produce novel functional product in ten consecutive reaction cycles. The product, obtained under optimal conditions (60 °C, 7.65 IU/mL, 12 h), resulted in 56.0% FOS, 16.7% sucrose, and 27.3% monosaccharides of total carbohydrates, leading to a 1.6-fold reduction in caloric content. The obtained products` prebiotic potential toward the probiotic strain Lactobacillus plantarum 299v was demonstrated. The changes in physico-chemical and sensorial characteristics were esteemed as negligible.
Collapse
Affiliation(s)
- Milica Veljković
- Innovation Centre of Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade, Serbia.
| | - Katarina Banjanac
- Innovation Centre of Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade, Serbia.
| | - Ana Milivojević
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade, Serbia.
| | - Marija Ćorović
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade, Serbia.
| | - Milica Simović
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade, Serbia.
| | - Dejan Bezbradica
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, Belgrade, Serbia.
| |
Collapse
|
4
|
Chavan AR, Khardenavis AA. Annotating Multiple Prebiotic Synthesizing Capabilities Through Whole Genome Sequencing of Fusarium Strain HFK-74. Appl Biochem Biotechnol 2024; 196:4993-5012. [PMID: 37994978 DOI: 10.1007/s12010-023-04788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
In the present study, seven fungal isolates from effluent treatment plants were screened for the production of prebiotic fructooligosaccharide synthesizing enzymes with the highest activity of fructofuranosidase (17.52 U/mL) and fructosyl transferase (18.92 U/mL) in strain HKF-74. Mining of genome sequence of strain revealed the annotation of genes providing multiple carbohydrate metabolizing capacities, such as amylases (AMY1), beta-galactosidase (BGAL), beta-xylosidase (Xyl), β-fructofuranosidase (ScrB), fructosyltransferase (FTF), and maltose hydrolases (malH). The annotated genes were further supported by β-galactosidase (15.90 U/mL), xylanase (17.91 U/mL), and α-amylase (14.05 U/mL) activities for synthesis of galactooligosaccharides, xylooligosaccarides, and maltooligosaccharides, respectively. In addition to genes encoding prebiotic synthesizing enzymes, four biosynthetic gene clusters (BGCs) including Type I polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), NRPS-like, and terpene were also predicted in strain HKF-74. This was significant considering their potential role in pharmaceutical and therapeutic applications as well as in virulence. Accurate taxonomic assignment of strain HKF-74 by in silico genomic comparison indicated its closest identity to type strains Fusarium verticillioides NRRL 20984, and 7600. The average nucleotide identity (ANI) of strain HKF-74 with these strains was 92.5% which was close to the species threshold cut-off value (95-96%) while the DNA-DNA hybridization (DDH) value was 83-84% which was greater than both, species delineating (79-80%), and also sub-species delineating (70%) boundaries. Our findings provide a foundation for further research into the use of Fusarium strains and their prebiotic synthesizing enzymes for the development of novel prebiotic supplements.
Collapse
Affiliation(s)
- Atul Rajkumar Chavan
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Rawat HK, Nath S, Sharma I, Kango N. Recent developments in the production of prebiotic fructooligosaccharides using fungal fructosyltransferases. Mycology 2024; 15:564-584. [PMID: 39678637 PMCID: PMC11636151 DOI: 10.1080/21501203.2024.2323713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 12/17/2024] Open
Abstract
Prebiotic nutritional ingredients have received attention due to their health-promoting potential and related uses in the food and nutraceutical industries. Recent times have witnessed an increasing interest in the use of fructooligosaccharides (FOS) as prebiotics and their generation using microbial enzymes. FOS consumption is known to confer health benefits such as protection against colon cancer, improved mineral absorption, lowering effect on serum lipid and cholesterol concentration, antioxidant properties, favourable dietary modulation of the human colonic microbiota, and immuno-modulatory effects. Comparative analysis of molecular models of various fructosyltransferases (FTases) reveals the mechanism of action and interaction of substrate with the active site. Microbial FTases carry out transfructosylation of sucrose into fructooligosaccharides (kestose, nystose, and fructofuranosylnystose), the most predominantly used prebiotic oligosaccharides. Furthermore, FOS has also been used for other purposes, such as low-calorie sweeteners, dietary fibres, and as the substrates for fermentation. This review highlights the occurrence, characteristics, immobilisation, and potential applications of FOS-generating fungal FTases. Production, heterologous expression, molecular characteristics, and modelling of fungal FTases underpinning their biotechnological prospects are also discussed.
Collapse
Affiliation(s)
- Hemant Kumar Rawat
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Isha Sharma
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| |
Collapse
|
6
|
Cummings RD. A periodic table of monosaccharides. Glycobiology 2024; 34:cwad088. [PMID: 37935401 PMCID: PMC11491510 DOI: 10.1093/glycob/cwad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
It is important to recognize the great diversity of monosaccharides commonly encountered in animals, plants, and microbes, as well as to organize them in a visually interesting style that also emphasizes their similarities and relatedness. This article discusses the nature of building blocks, monosaccharides, and monosaccharide derivatives-terms commonly used in discussing "glycomolecules" found in nature. To aid in awareness of monosaccharide diversity, here is presented a Periodic Table of Monosaccharides. The rationale is given for construction of the Table and the selection of 103 monosaccharides, which is largely based on those presented in the KEGG and SNFG websites of monosaccharides, and includes room to enlarge as new discoveries are made. The Table should have educational value and is intended to capture the attention and foster imagination of those not very familiar with glycosciences, and encourage researchers to delve deeper into this fascinating area.
Collapse
Affiliation(s)
- Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087-3 Blackfan Circle, Boston, MA 02115, United States
| |
Collapse
|
7
|
Jaswal AS, Elangovan R, Mishra S. Synthesis and molecular characterization of levan produced by immobilized Microbacterium paraoxydans. J Biotechnol 2023; 373:63-72. [PMID: 37451319 DOI: 10.1016/j.jbiotec.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
In this study, we report high molecular weight (HMW) levan production by whole cells of Microbacterium paraoxydans, previously reported to be a good producer of fructooligosaccharides. Structural analysis of the extracellularly produced fructan indicated the glycosidic bonds between the adjacent fructose to be of β-(2, 6) linkage with over 90% of the fructan to have molecular weight around 2 × 108 Da and 10% with a molecular weight of ∼20 kDa. Immobilization of the cells in Ca-alginate led to the production of 44.6 g/L levan with a yield of 0.29 g/g sucrose consumed. Factors affecting the conversion rate were identified by One-Factor-At-a-Time (OFAT) analysis and the combination of these (initial sucrose concentration of 400 g/L, 100 mM buffer pH 7, the temperature of 37 °C and 20 mM CaCl2) led to the production of ∼129 g/L of levan with a yield of ∼0.41 g/g sucrose consumed and volumetric productivity of 1.8 g/L/h.
Collapse
Affiliation(s)
- Avijeet Singh Jaswal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi 110016, India
| | - Ravikrishnan Elangovan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi 110016, India
| | - Saroj Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi 110016, India.
| |
Collapse
|
8
|
Sugar reduction in beverages: Current trends and new perspectives from sensory and health viewpoints. Food Res Int 2022; 162:112076. [DOI: 10.1016/j.foodres.2022.112076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/08/2022] [Accepted: 10/22/2022] [Indexed: 11/22/2022]
|
9
|
Ko H, Sung BH, Kim MJ, Sohn JH, Bae JH. Fructan Biosynthesis by Yeast Cell Factories. J Microbiol Biotechnol 2022; 32:1373-1381. [PMID: 36310357 PMCID: PMC9720074 DOI: 10.4014/jmb.2207.07062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
Fructan is a polysaccharide composed of fructose and can be classified into several types, such as inulin, levan, and fructo-oligosaccharides, based on their linkage patterns and degree of polymerization. Owing to its structural and functional diversity, fructan has been used in various fields including prebiotics, foods and beverages, cosmetics, and pharmaceutical applications. With increasing interest in fructans, efficient and straightforward production methods have been explored. Since the 1990s, yeast cells have been employed as producers of recombinant enzymes for enzymatic conversion of fructans including fructosyltransferases derived from various microbes and plants. More recently, yeast cell factories are highlighted as efficient workhorses for fructan production by direct fermentation. In this review, recent advances and strategies for fructan biosynthesis by yeast cell factories are discussed.
Collapse
Affiliation(s)
- Hyunjun Ko
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Bong Hyun Sung
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Mi-Jin Kim
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jung-Hoon Sohn
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Cellapy Bio Inc., Bio-Venture Center 211, Daejeon 34141, Republic of Korea,Corresponding authors J.H. Sohn Phone: +82-42-860-4458 Fax: +82-42-860-4489 E-mail:
| | - Jung-Hoon Bae
- Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,
J.H. Bae Phone: +82-42-860-4484 Fax: +82-42-860-4489 E-mail:
| |
Collapse
|
10
|
Wienberg F, Hövels M, Deppenmeier U. High-yield production and purification of prebiotic inulin-type fructooligosaccharides. AMB Express 2022; 12:144. [DOI: 10.1186/s13568-022-01485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractDue to the health-promoting effects and functional properties of inulin-type fructooligosaccharides (I-FOS), the global market for I-FOS is constantly growing. Hence, there is a continuing demand for new, efficient biotechnological approaches for I-FOS production. In this work, crude inulosucrase InuGB-V3 from Lactobacillus gasseri DSM 20604 was used to synthesize I-FOS from sucrose. Supplementation with 1 mM CaCl2, a pH of 3.5–5.5, and an incubation temperature of 40 °C were found to be optimal production parameters at which crude inulosucrase showed high conversion rates, low sucrose hydrolysis, and excellent stability over 4 days. The optimal process conditions were employed in cell-free bioconversion reactions. By elevating the substrate concentration from 570 to 800 g L−1, the I-FOS concentration and the synthesis of products with a low degree of polymerization (DP) could be increased, while sucrose hydrolysis was decreased. Bioconversion of 800 g L−1 sucrose for 20 h resulted in an I-FOS-rich syrup with an I-FOS concentration of 401 ± 7 g L−1 and an I-FOS purity of 53 ± 1% [w/w]. I-FOS with a DP of 3–11 were synthesized, with 1,1-kestotetraose (DP4) being the predominant transfructosylation product. The high-calorie sugars glucose, sucrose, and fructose were removed from the generated I-FOS-rich syrup using activated charcoal. Thus, 81 ± 5% of the initially applied I-FOS were recovered with a purity of 89 ± 1%.
Collapse
|
11
|
Galvão DFA, Pessoni RAB, Elsztein C, Moreira KA, Morais MA, de Cássia Leone Figueiredo-Ribeiro R, Gaspar M, Morais MMC, Fialho MB, Braga MR. A comparative study between Fusarium solani and Neocosmospora vasinfecta revealed differential profile of fructooligosaccharide production. Folia Microbiol (Praha) 2022; 67:873-889. [PMID: 35729302 DOI: 10.1007/s12223-022-00983-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Fructooligosaccharides (FOS) are fructose-based oligosaccharides employed as additives to improve the food's nutritional and technological properties. The rhizosphere of plants that accumulate fructopolysaccharides as inulin has been revealed as a source of filamentous fungi. These fungi can produce FOS either by inulin hydrolysis or by biosynthesis from sucrose, including unusual FOS with enhanced prebiotic properties. Here, we investigated the ability of Fusarium solani and Neocosmospora vasinfecta to produce FOS from different carbon sources. Fusarium solani and N. vasinfecta grew preferentially in inulin instead of sucrose, resulting in the FOS production as the result of endo-inulinase activities. N. vasinfecta was also able to produce the FOS 1-kestose and 6-kestose from sucrose, indicating transfructosylating activity, absent in F. solani. Moreover, the results showed how these carbon sources affected fungal cell wall composition and the expression of genes encoding for β-1,3-glucan synthase and chitin synthase. Inulin and fructose promoted changes in fungal macroscopic characteristics partially explained by alterations in cell wall composition. However, these alterations were not directly correlated with the expression of genes related to cell wall synthesis. Altogether, the results pointed to the potential of both F. solani and N. vasinfecta to produce FOS at specific profiles.
Collapse
Affiliation(s)
- Daiane F A Galvão
- Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, R. Bom Pastor, s/n, 55 292-270, Garanhuns, PA, Brazil.,Programa de Pós-Graduação em Biologia Celular e Estrutural, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Rosemeire A B Pessoni
- Faculdade da Saúde, Universidade Metodista de São Paulo, Rua Alfeu Tavares, 149, Sao Bernardo do Campo, SP, 09641-000, Brazil
| | - Carolina Elsztein
- Departamento de Genética, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, 50670-901, Recife PE, Brazil
| | - Keila A Moreira
- Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, R. Bom Pastor, s/n, 55 292-270, Garanhuns, PA, Brazil
| | - Marcos A Morais
- Departamento de Genética, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, 50670-901, Recife PE, Brazil
| | - Rita de Cássia Leone Figueiredo-Ribeiro
- Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais (former Instituto de Botânica), Av. Miguel Stéfano, 3687, São Paulo, SP, 04301-902, Brazil
| | - Marília Gaspar
- Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais (former Instituto de Botânica), Av. Miguel Stéfano, 3687, São Paulo, SP, 04301-902, Brazil
| | - Marcia M C Morais
- Instituto de Ciências Biológicas, Universidade de Pernambuco, R. Arnóbio Marques, 310 50100-130, Recife, PA, Brazil
| | - Mauricio B Fialho
- Universidade Federal do ABC, Avenida dos Estados, Santo André, SP, 5001, 09210-580, Brazil.
| | - Marcia R Braga
- Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais (former Instituto de Botânica), Av. Miguel Stéfano, 3687, São Paulo, SP, 04301-902, Brazil.
| |
Collapse
|
12
|
Xia Y, Guo W, Han L, Shen W, Chen X, Yang H. Significant Improvement of Both Catalytic Efficiency and Stability of Fructosyltransferase from Aspergillus niger by Structure-Guided Engineering of Key Residues in the Conserved Sequence of the Catalytic Domain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7202-7210. [PMID: 35649036 DOI: 10.1021/acs.jafc.2c01699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fructosyltransferase is a key enzyme in fructo-oligosaccharide production, while the highly demanding conditions of industrial processes may reduce its stability and activity. This study employs sequence alignment and structural analysis to target three potential residues (Gln38, Ile39, and Cys43) around the active center of FruSG from Aspergillus niger, and mutants with greatly improved activity and stability were obtained through site-directed mutagenesis. The Km values of C43N and Q38Y were, respectively, reduced to 60.8 and 93.1% compared to those of WT. Meanwhile, the kcat of C43N was increased by 21.2-fold compared to that of WT. These imply that both the affinity and catalytic efficiency of C43N were significantly enhanced compared to WT. The Glide docking score of sucrose inside C43N was calculated to be -5.980, which was lower than that of WT (-4.887). What is more, the proposed general acid/base catalyst Glu273 with a lower pKa value of C43N calculated by PROPKA might contribute to an easier catalytic reaction compared to that of WT. The thermal stability and pH stability of the mutant C43N were significantly enhanced compared to those of WT, and more hydrogen bonds formed during molecular dynamics simulations might contribute to the improved stability of C43N.
Collapse
Affiliation(s)
- Yuanyuan Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wenwen Guo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Laichuang Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei Shen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Choukade R, Kango N. Purification of Aspergillus tamarii mycelial fructosyltransferase (m-FTase), optimized FOS production, and evaluation of its anticancer potential. J Food Sci 2022; 87:3294-3306. [PMID: 35638324 DOI: 10.1111/1750-3841.16173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 11/29/2022]
Abstract
In the present study, generation of prebiotic fructooligosaccharides (FOS) using Aspergillus tamarii FTase was optimized by applying response surface methodology. Optimal FOS (251 g L-1 ) was generated at 28.4°C, pH 7.0 and 50% (w/v) sucrose leading to 1.97-fold yield enhancement. The m-FTase was purified using ultrafiltration followed by HiTrap Q HP anion exchange chromatography resulting in 2.15-fold purified FTase with 12.76 U mg-1 specific activity. Purified FTase (75 kDa) had Km and Vmax values of 1049.717 mM and 2.094 µmol min-1 mg-1 , respectively. FOS incorporation led to upregulation of caspase 3, caspase 9, and Bax genes suggesting mitochondrial apoptosis activation in cancer cells. The study describes characteristics of purified FTase from A. tamarii, production optimization of FOS and unravels the role of FOS in anticancer activity against HT-29 cells. PRACTICAL APPLICATION: This study provides detailed insights of kinetic and thermodynamic characteristics of purified FTase, a prebiotic FOS-generating enzyme. Moreover, the role of the apoptotic genes involved in anticancer activity, and the prebiotic potential of FOS is also investigated. These findings are important in the context of FOS applications, and the optimized production strategies make it useful for industrial application.
Collapse
Affiliation(s)
- Ritumbhara Choukade
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
14
|
Cao W, Deng T, Cao W, Shen F, Wan Y. From sucrose to fructo-oligosaccharides: Production and purification of fructo-oligosaccharides by an integrated enzymatic catalysis and membrane separation process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Zeng W, Leng S, Zhang Y, Chen G, Liang Z. Development of new strategies for the production of high-purity fructooligosaccharides using β-fructofuranosidase and a novel isolated Wickerhamomycesanomalus. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|