1
|
Pulman J, Botto C, Malki H, Ren D, Oudin P, De Cian A, As M, Izabelle C, Saubamea B, Forster V, Fouquet S, Robert C, Portal C, El-Amraoui A, Fisson S, Concordet JP, Dalkara D. Direct delivery of Cas9 or base editor protein and guide RNA complex enables genome editing in the retina. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102349. [PMID: 39494148 PMCID: PMC11531619 DOI: 10.1016/j.omtn.2024.102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024]
Abstract
Genome editing by CRISPR-Cas holds promise for the treatment of retinal dystrophies. For therapeutic gene editing, transient delivery of CRISPR-Cas9 is preferable to viral delivery which leads to long-term expression with potential adverse consequences. Cas9 protein and its guide RNA, delivered as ribonucleoprotein (RNP) complexes, have been successfully delivered into the retinal pigment epithelium in vivo. However, the delivery into photoreceptors, the primary focus in retinal dystrophies, has not been achieved. Here, we investigate the feasibility of direct RNP delivery into photoreceptors and retinal pigment epithelium cells. We demonstrate that Cas9 or adenine-base editors complexed with guide RNA, can enter retinal cells without the addition of any carrier compounds. Once in the retinal cells, editing rates vary based on the efficacy of the guide RNA and the specific location edited within the genes. Cas9 RNP delivery at high concentrations, however, leads to outer retinal toxicity. This underscores the importance of improving delivery efficiency for potential therapeutic applications in the future.
Collapse
Affiliation(s)
- Juliette Pulman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Catherine Botto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Hugo Malki
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Duohao Ren
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Paul Oudin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Anne De Cian
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS 7196, Muséum National d'Histoire Naturelle, CP26 43 rue Cuvier 75231 Paris Cedex, France
| | - Marie As
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS 7196, Muséum National d'Histoire Naturelle, CP26 43 rue Cuvier 75231 Paris Cedex, France
| | | | - Bruno Saubamea
- Université Paris Cité, Inserm, CNRS, P-MIM, PICMO, 75006 Paris, France
| | - Valerie Forster
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Stéphane Fouquet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Camille Robert
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Céline Portal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Aziz El-Amraoui
- Institut Pasteur, Université Paris Cité, INSERM AO06, Institut de l’Audition, Unit Progressive Sensory Disorders, Pathophysiology and Therapy, 63 rue de Charenton 75012 Paris, France
| | - Sylvain Fisson
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
- Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Jean-Paul Concordet
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS 7196, Muséum National d'Histoire Naturelle, CP26 43 rue Cuvier 75231 Paris Cedex, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| |
Collapse
|
2
|
Sun R, Bishop T. The nucleosome reference frame and standard geometries for octasomes. Biophys Rev 2024; 16:315-330. [PMID: 39099844 PMCID: PMC11297230 DOI: 10.1007/s12551-024-01206-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/21/2024] [Indexed: 08/06/2024] Open
Abstract
There are over 533 nucleosome structures in the Research Collaboratory for Structural Bioinformatics (RCSB). Collectively, numerous variants and species are present, as are sub-nucleosomal and super-nucleosomal assemblies within the nucleosome family. The organization of the histones and DNA is highly conserved in all standard octasomes containing 145, 146, or 147 base pairs. This observation is used to establish a nucleosome reference frame that enables us to describe and compare the gross structure and organization of all nucleosomes. We observe that cumulative sums of Rise, Twist, and DNA arc length are linear functions of the base pair index withR 2 values exceeding 0.999 for almost all octasome structures. These relationships enable us to readily compare the location and orientation of DNA director frames extracted from the crystal structures to ideal superhelix values. Such comparisons reveal that the DNA superhelix extracted from X-ray structures exhibits a sinusoidal variation with an amplitude of approximately 5Å about a constant superhelix radius of ∼ 42 Å, in agreement with early descriptions of nucleosome organization as tripartite. There is also a distinct straightening of the nucleosomal DNA over the outermost turn of DNA's double helix. The straightening of the DNA superhelix marks the transition to linker DNA and is easily recognized as a rapid increase in superhelix radius and is concomitant with a change in pitch. This provides a rigorous means of separating nucleosomal DNA from linker DNA. For all X-ray structures, we find that near the dyad, there exists a set of DNA director frames for which the spatial location and orientation are highly conserved. Away from the dyad, the DNA superhelix exhibits "singletrack" and "multipath" regions. In the singletrack region, all structures exhibit a single highly conserved pathway along which all base pairs must track, but at varying rates. In the multipath regions, the base pairs are allowed to map out a limited number of different pathways along the surface of the histone octamer. To demonstrate the utility of the proposed reference geometries, standard and distorted octasome structures, super-nucleosomal structures, nucleosomes with linker DNA, and nucleosomes in closed circular DNA are analyzed. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-024-01206-5.
Collapse
Affiliation(s)
- Ran Sun
- College of Engineering and Science, Louisiana Tech University, 600 Dan Reneau Dr., Ruston, LA 71272 USA
| | - Thomas Bishop
- Departments of Chemistry and Physics, Louisiana Tech University, 600 Dan Reneau Dr, Ruston, LA 71272 USA
| |
Collapse
|
3
|
Liu G, Zhao H, Meng H, Xing Y, Cai L. A deformation energy model reveals sequence-dependent property of nucleosome positioning. Chromosoma 2021; 130:27-40. [PMID: 33452566 PMCID: PMC7889546 DOI: 10.1007/s00412-020-00750-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022]
Abstract
We present a deformation energy model for predicting nucleosome positioning, in which a position-dependent structural parameter set derived from crystal structures of nucleosomes was used to calculate the DNA deformation energy. The model is successful in predicting nucleosome occupancy genome-wide in budding yeast, nucleosome free energy, and rotational positioning of nucleosomes. Our model also indicates that the genomic regions underlying the MNase-sensitive nucleosomes in budding yeast have high deformation energy and, consequently, low nucleosome-forming ability, while the MNase-sensitive non-histone particles are characterized by much lower DNA deformation energy and high nucleosome preference. In addition, we also revealed that remodelers, SNF2 and RSC8, are likely to act in chromatin remodeling by binding to broad nucleosome-depleted regions that are intrinsically favorable for nucleosome positioning. Our data support the important role of position-dependent physical properties of DNA in nucleosome positioning.
Collapse
Affiliation(s)
- Guoqing Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
- Inner Mongolia Key Lab of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
| | - Hongyu Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Lab of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Hu Meng
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Lab of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Yongqiang Xing
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Lab of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Lu Cai
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
- Inner Mongolia Key Lab of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| |
Collapse
|
4
|
Liu G, Liu GJ, Tan JX, Lin H. DNA physical properties outperform sequence compositional information in classifying nucleosome-enriched and -depleted regions. Genomics 2018; 111:1167-1175. [PMID: 30055231 DOI: 10.1016/j.ygeno.2018.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/07/2018] [Accepted: 07/15/2018] [Indexed: 12/15/2022]
Abstract
The nucleosome is the fundamental structural unit of eukaryotic chromatin and plays an essential role in the epigenetic regulation of cellular processes, such as DNA replication, recombination, and transcription. Hence, it is important to identify nucleosome positions in the genome. Our previous model based on DNA deformation energy, in which a set of DNA physical descriptors was used, performed well in predicting nucleosome dyad positions and occupancy. In this study, we established a machine-learning model for predicting nucleosome occupancy in order to further verify the physical descriptors. Results showed that (1) our model outperformed several other sequence compositional information-based models, indicating a stronger dependence of nucleosome positioning on DNA physical properties; (2) nucleosome-enriched and -depleted regions have distinct features in terms of DNA physical descriptors like sequence-dependent flexibility and equilibrium structure parameters; (3) gene transcription start sites and termination sites can be well characterized with the distribution patterns of the physical descriptors, indicating the regulatory role of DNA physical properties in gene transcription. In addition, we developed a web server for the model, which is freely accessible at http://lin-group.cn/server/iNuc-force/.
Collapse
Affiliation(s)
- Guoqing Liu
- The School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China.
| | - Guo-Jun Liu
- School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620000, Russia
| | - Jiu-Xin Tan
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Lin
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
5
|
The implication of DNA bending energy for nucleosome positioning and sliding. Sci Rep 2018; 8:8853. [PMID: 29891930 PMCID: PMC5995830 DOI: 10.1038/s41598-018-27247-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/24/2018] [Indexed: 11/24/2022] Open
Abstract
Nucleosome not only directly affects cellular processes, such as DNA replication, recombination, and transcription, but also severs as a fundamentally important target of epigenetic modifications. Our previous study indicated that the bending property of DNA is important in nucleosome formation, particularly in predicting the dyad positions of nucleosomes on a DNA segment. Here, we investigated the role of bending energy in nucleosome positioning and sliding in depth to decipher sequence-directed mechanism. The results show that bending energy is a good physical index to predict the free energy in the process of nucleosome reconstitution in vitro. Our data also imply that there are at least 20% of the nucleosomes in budding yeast do not adopt canonical positioning, in which underlying sequences wrapped around histones are structurally symmetric. We also revealed distinct patterns of bending energy profile for distinctly organized chromatin structures, such as well-positioned nucleosomes, fuzzy nucleosomes, and linker regions and discussed nucleosome sliding in terms of bending energy. We proposed that the stability of a nucleosome is positively correlated with the strength of the bending anisotropy of DNA segment, and both accessibility and directionality of nucleosome sliding is likely to be modulated by diverse patterns of DNA bending energy profile.
Collapse
|
6
|
Liu G, Xing Y, Zhao H, Wang J, Shang Y, Cai L. A deformation energy-based model for predicting nucleosome dyads and occupancy. Sci Rep 2016; 6:24133. [PMID: 27053067 PMCID: PMC4823781 DOI: 10.1038/srep24133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/21/2016] [Indexed: 12/14/2022] Open
Abstract
Nucleosome plays an essential role in various cellular processes, such as DNA replication, recombination, and transcription. Hence, it is important to decode the mechanism of nucleosome positioning and identify nucleosome positions in the genome. In this paper, we present a model for predicting nucleosome positioning based on DNA deformation, in which both bending and shearing of the nucleosomal DNA are considered. The model successfully predicted the dyad positions of nucleosomes assembled in vitro and the in vitro map of nucleosomes in Saccharomyces cerevisiae. Applying the model to Caenorhabditis elegans and Drosophila melanogaster, we achieved satisfactory results. Our data also show that shearing energy of nucleosomal DNA outperforms bending energy in nucleosome occupancy prediction and the ability to predict nucleosome dyad positions is attributed to bending energy that is associated with rotational positioning of nucleosomes.
Collapse
Affiliation(s)
- Guoqing Liu
- The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China.,Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Yongqiang Xing
- The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Hongyu Zhao
- The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Jianying Wang
- The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China.,State Key Laboratory for Utilization of Bayan Obo Multi-Metallic Resources, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Yu Shang
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.,College of Computer Science and Technology, Jilin University, Changchun, Jilin 130021, China
| | - Lu Cai
- The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| |
Collapse
|
7
|
Abstract
Nucleosome positioning is an important process required for proper genome packing and its accessibility to execute the genetic program in a cell-specific, timely manner. In the recent years hundreds of papers have been devoted to the bioinformatics, physics and biology of nucleosome positioning. The purpose of this review is to cover a practical aspect of this field, namely, to provide a guide to the multitude of nucleosome positioning resources available online. These include almost 300 experimental datasets of genome-wide nucleosome occupancy profiles determined in different cell types and more than 40 computational tools for the analysis of experimental nucleosome positioning data and prediction of intrinsic nucleosome formation probabilities from the DNA sequence. A manually curated, up to date list of these resources will be maintained at http://generegulation.info.
Collapse
|
8
|
Iacovelli F, Falconi M. Decoding the conformation-linked functional properties of nucleic acids by the use of computational tools. FEBS J 2015; 282:3298-310. [DOI: 10.1111/febs.13315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/16/2015] [Accepted: 04/29/2015] [Indexed: 12/25/2022]
Affiliation(s)
| | - Mattia Falconi
- Department of Biology; University of Rome “Tor Vergata”; Italy
| |
Collapse
|
9
|
Meyer S, Everaers R. Inferring coarse-grain histone-DNA interaction potentials from high-resolution structures of the nucleosome. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064101. [PMID: 25563807 DOI: 10.1088/0953-8984/27/6/064101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The histone-DNA interaction in the nucleosome is a fundamental mechanism of genomic compaction and regulation, which remains largely unknown despite increasing structural knowledge of the complex. In this paper, we propose a framework for the extraction of a nanoscale histone-DNA force-field from a collection of high-resolution structures, which may be adapted to a larger class of protein-DNA complexes. We applied the procedure to a large crystallographic database extended by snapshots from molecular dynamics simulations. The comparison of the structural models first shows that, at histone-DNA contact sites, the DNA base-pairs are shifted outwards locally, consistent with locally repulsive forces exerted by the histones. The second step shows that the various force profiles of the structures under analysis derive locally from a unique, sequence-independent, quadratic repulsive force-field, while the sequence preferences are entirely due to internal DNA mechanics. We have thus obtained the first knowledge-derived nanoscale interaction potential for histone-DNA in the nucleosome. The conformations obtained by relaxation of nucleosomal DNA with high-affinity sequences in this potential accurately reproduce the experimental values of binding preferences. Finally we address the more generic binding mechanisms relevant to the 80% genomic sequences incorporated in nucleosomes, by computing the conformation of nucleosomal DNA with sequence-averaged properties. This conformation differs from those found in crystals, and the analysis suggests that repulsive histone forces are related to local stretch tension in nucleosomal DNA, mostly between adjacent contact points. This tension could play a role in the stability of the complex.
Collapse
Affiliation(s)
- Sam Meyer
- Université de Lyon, Laboratoire de Physique and Centre Blaise Pascal, Ecole normale supérieure de Lyon, UMR CNRS 5672, Lyon, France. Université de Lyon, INSA-Lyon, INRIA, LIRIS, CNRS UMR 5205, Lyon, France. Université de Lyon, Microbiologie Adaptation et Pathogénie, INSA-Lyon, CNRS UMR 5240, Lyon,France
| | | |
Collapse
|
10
|
Biswas M, Langowski J, Bishop TC. Atomistic simulations of nucleosomes. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2013. [DOI: 10.1002/wcms.1139] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Zhang Z, Zhang Y, Gutman I. Predicting nucleosome positions in yeast: using the absolute frequency. J Biomol Struct Dyn 2012; 29:1081-8. [PMID: 22292961 DOI: 10.1080/073911012010525032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Nucleosome is the basic structure of chromatin in eukaryotic cells, and they form the chromatin fiber interconnected by sections of linker DNA. Nucleosome positioning is of great significance for gene transcription regulation. In this paper, we consider the difference of absolute frequency of nucleotides between the nucleosome forming and nucleosome inhibiting sequences. Based on the 2-mer absolute frequency of nucleotides in genome, a new model is constructed to distinguish nucleosome DNA and linker DNA. When used to predict DNA potential for forming nucleosomes in S. cerevisiae, the model achieved a high accuracy of 96.05%. Thus, the model is very useful for predicting nucleosome positioning.
Collapse
Affiliation(s)
- Zhiqian Zhang
- School of Mathematics and Statistics, Shandong University at Weihai, Weihai 264209, China
| | | | | |
Collapse
|
12
|
Abstract
It has been known for decades that DNA is extremely flexible and polymorphic, but our knowledge of its accessible conformational space remains limited. Structural data, primarily from X-ray diffraction studies, is sparse in comparison to the manifold configurations possible, and direct experimental examinations of DNA's flexibility still suffer from many limitations. In the face of these shortcomings, molecular dynamics (MD) is now an essential tool in the study of DNA. It affords detailed structural and dynamical insights, which explains its recent transition from a small number of highly specialized laboratories to a large variety of groups dealing with challenging biological problems. MD is now making an irreversible journey to the mainstream of research in biology, with the attendant opportunities and challenges. But given the speed with which MD studies of DNA have spread, the roots remain somewhat shallow: in many cases, there is a lack of deep knowledge about the foundations, strengths, and limits of the technique. In this Account, we discuss how MD has become the most important source of structural and flexibility data on DNA, focusing on advances since 2007 of atomistic MD in the description of DNA under near-physiological conditions and highlighting the possibilities and shortcomings of the technique. The evolution in the field over the past four years is a prelude to the ongoing revolution. The technique has gained in robustness and predictive power, which when coupled with the spectacular improvements in software and hardware has enabled the tackling of systems of increasing complexity. Simulation times of microseconds have now been achieved, with even longer times when specialized hardware is used. As a result, we have seen the first real-time simulation of large conformational transitions, including folding and unfolding of short DNA duplexes. Noteworthy advances have also been made in the study of DNA-ligand interactions, and we predict that a global thermodynamic and kinetic picture of the binding landscape of DNA will become available in a few years. MD will become a crucial tool in areas such as biomolecular engineering and synthetic biology. MD has also been shown to be an excellent source of parameters for mesoscopic models of DNA flexibility. Such models can be refined through atomistic MD simulations on small duplexes and then applied to the study of entire chromosomes. Recent evidence suggests that MD-derived elastic models can successfully predict the position of regulatory regions in DNA and can help advance our understanding of nucleosome positioning and chromatin plasticity. If these results are confirmed, MD simulations can become the ultimate tool to decipher a physical code that can contribute to gene regulation. We are entering the golden age of MD simulations of DNA. Undoubtedly, the expectations are high, but the challenges are also enormous. These include the need for more accurate potential energy functionals and for longer and more complex simulations in more realistic systems. The joint research effort of several groups will be crucial for adapting the technique to the requirements of the coming decade.
Collapse
Affiliation(s)
- Alberto Pérez
- Joint IRB-BSC Program in Computational Biology, Institute of Research in Biomedicine Barcelona, Baldiri i Reixac 10, Barcelona 08028, Spain
| | - F. Javier Luque
- Department de Fisicoquímica and Institut de Biomedicina (IBUB), Facultat de Farmàcia, Universitat de Barcelona, Avgda Diagonal 643, Barcelona 08028, Spain
| | - Modesto Orozco
- Joint IRB-BSC Program in Computational Biology, Institute of Research in Biomedicine Barcelona, Baldiri i Reixac 10, Barcelona 08028, Spain
- Departament de Bioquímica, Universitat de Barcelona, Avgda Diagonal 647, Barcelona 08028, Spain, and Instituto Nacional de Bioinformàtica, Parc Científic de Barcelona, Baldiri i Reixac 10, Barcelona 08028, Spain
| |
Collapse
|
13
|
Korolev N, Fan Y, Lyubartsev AP, Nordenskiöld L. Modelling chromatin structure and dynamics: status and prospects. Curr Opin Struct Biol 2012; 22:151-9. [PMID: 22305428 DOI: 10.1016/j.sbi.2012.01.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 11/28/2022]
Abstract
The packaging of genomic DNA into chromatin in the eukaryotic cell nucleus demands extensive compaction. This requires attractive nucleosome-nucleosome interactions to overcome repulsion between the negatively charged DNA segments as well as other constraints. At the same time, DNA must be dynamically accessible to the cellular machinery that operates on it. Recent progress in the experimental characterisation of the higher order structure and dynamics of well-defined chromatin fibres has stimulated the attempts at theoretical description of chromatin and the nucleosome. Here we review the present status of chromatin modelling, with particular emphasis on coarse-grained computer simulation models, the role of electrostatic interactions, and discuss future perspectives in the field.
Collapse
Affiliation(s)
- Nikolay Korolev
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | | | | | | |
Collapse
|
14
|
Chirgadze YN, Sivozhelezov VS, Polozov RV, Stepanenko VA, Ivanov VV. Recognition Rules for Binding of Homeodomains to Operator DNA. J Biomol Struct Dyn 2012; 29:715-31. [DOI: 10.1080/073911012010525019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Frenkel ZM, Trifonov EN, Volkovich Z, Bettecken T. Nucleosome Positioning Patterns Derived from Human Apoptotic Nucleosomes. J Biomol Struct Dyn 2011; 29:577-83. [DOI: 10.1080/073911011010524995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Sarma RH. Jon Widom—A Friend of JBSD and the Albany Conversation. J Biomol Struct Dyn 2011. [DOI: 10.1080/073911011010524989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Rapoport AE, Frenkel ZM, Trifonov EN. Nucleosome positioning pattern derived from oligonucleotide compositions of genomic sequences. J Biomol Struct Dyn 2011; 28:567-74. [PMID: 21142224 DOI: 10.1080/07391102.2011.10531243] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Availability of nucleosome positioning pattern(s) is crucial for chromatin studies. The matrix form of the pattern has been recently derived (I. Gabdank, D. Barash, E. N. Trifonov. J Biomol Struct Dyn 26, 403-412 (2009), and E. N. Trifonov. J Biomol Struct Dyn 27, 741-746 (2010)). In its simplified linear form it is described by the motif CGRAAATTTYCG. Oligonucleotide components of the motif (say, triplets GRA, RAA, AAA, etc.) would be expected to appear in eukaryotic sequences more frequently. In this work we attempted the reconstruction of the bendability patterns for 13 genomes by a novel approach-extension of highest frequency trinucleotides. The consensus of the patterns reconstructed on the basis of trinucleotide frequencies in 13 eukaryotic genomes is derived: CRAAAATTTTYG. It conforms to the earlier established sequence motif. The reconstruction, thus, attests to the universality of the nucleosome DNA bendability pattern.
Collapse
Affiliation(s)
- Alexandra E Rapoport
- Genome Diversity Center, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel.
| | | | | |
Collapse
|
18
|
Rahmanpour R, Bathaie SZ. Histone H1 Structural Changes and its Interaction with DNA in the Presence of High Glucose ConcentrationIn VivoandIn Vitro. J Biomol Struct Dyn 2011; 28:575-86. [DOI: 10.1080/07391102.2011.10508596] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Marathe A, Bansal M. An ensemble of B-DNA dinucleotide geometries lead to characteristic nucleosomal DNA structure and provide plasticity required for gene expression. BMC STRUCTURAL BIOLOGY 2011; 11:1. [PMID: 21208404 PMCID: PMC3031206 DOI: 10.1186/1472-6807-11-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 01/05/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND A nucleosome is the fundamental repeating unit of the eukaryotic chromosome. It has been shown that the positioning of a majority of nucleosomes is primarily controlled by factors other than the intrinsic preference of the DNA sequence. One of the key questions in this context is the role, if any, that can be played by the variability of nucleosomal DNA structure. RESULTS In this study, we have addressed this question by analysing the variability at the dinucleotide and trinucleotide as well as longer length scales in a dataset of nucleosome X-ray crystal structures. We observe that the nucleosome structure displays remarkable local level structural versatility within the B-DNA family. The nucleosomal DNA also incorporates a large number of kinks. CONCLUSIONS Based on our results, we propose that the local and global level versatility of B-DNA structure may be a significant factor modulating the formation of nucleosomes in the vicinity of high-plasticity genes, and in varying the probability of binding by regulatory proteins. Hence, these factors should be incorporated in the prediction algorithms and there may not be a unique 'template' for predicting putative nucleosome sequences. In addition, the multimodal distribution of dinucleotide parameters for some steps and the presence of a large number of kinks in the nucleosomal DNA structure indicate that the linear elastic model, used by several algorithms to predict the energetic cost of nucleosome formation, may lead to incorrect results.
Collapse
Affiliation(s)
- Arvind Marathe
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore - 12, India
| | - Manju Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore - 12, India
| |
Collapse
|
20
|
Condensed DNA: condensing the concepts. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 105:208-22. [PMID: 20638406 DOI: 10.1016/j.pbiomolbio.2010.07.002] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 07/11/2010] [Indexed: 01/09/2023]
Abstract
DNA is stored in vivo in a highly compact, so-called condensed phase, where gene regulatory processes are governed by the intricate interplay between different states of DNA compaction. These systems often have surprising properties, which one would not predict from classical concepts of dilute solutions. The mechanistic details of DNA packing are essential for its functioning, as revealed by the recent developments coming from biochemistry, electrostatics, statistical mechanics, and molecular and cell biology. Different aspects of condensed DNA behavior are linked to each other, but the links are often hidden in the bulk of experimental and theoretical details. Here we try to condense some of these concepts and provide interconnections between the different fields. After a brief description of main experimental features of DNA condensation inside viruses, bacteria, eukaryotes and the test tube, main theoretical approaches for the description of these systems are presented. We end up with an extended discussion of the role of DNA condensation in the context of gene regulation and mention potential applications of DNA condensation in gene therapy and biotechnology.
Collapse
|
21
|
Abstract
The interactive chromatin modeling web server (ICM Web) is an interactive tool that allows users to rapidly assess nucleosome stability and fold sequences of DNA into putative chromatin templates. ICM Web takes a sequence composed of As, Cs, Gs, and Ts as input and generates (i) a nucleosome energy level diagram, (ii) coarse-grained representations of free DNA and chromatin and (iii) plots of the helical parameters (Tilt, Roll, Twist, Shift, Slide and Rise) as a function of position. The user can select from several different energy models, nucleosome structures and methods for placing nucleosomes in the energy landscape. Alternatively, if nucleosome footprints are known from experiment, ICM Web can use these positions to create a nucleosome array. The default energy model achieves a correlation coefficient of 0.7 with 100 experimentally determined values of stability and properly predicts the location of six positioned nucleosomes in the mouse mammary tumor virus (MMTV) promoter. ICM Web is suitable for interactively investigating nucleosome stability and chromatin folding for sequences up to tens of kilobases in length. No login is required to use ICM Web.
Collapse
Affiliation(s)
- Richard C Stolz
- Department of Biostatistics, Tulane University, 1440 Canal Street, Suite 2001, New Orleans, LA 70112, USA
| | | |
Collapse
|