Petering DH, Byrnes RW, Antholine WE. The role of redox-active metals in the mechanism of action of bleomycin.
Chem Biol Interact 1990;
73:133-82. [PMID:
1690086 DOI:
10.1016/0009-2797(90)90001-4]
[Citation(s) in RCA: 119] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Belomycin is a glycopeptide antibiotic routinely used to treat human cancer. It is commonly thought to exert its biological effects as a metallodrug, which oxidatively damages DNA. This review systematically examines the properties of bleomycin which contribute to its reaction with DNA in vitro and may be important in the breakage of DNA in cells. Because strand cleavage results from the reductive activation of dioxygen by metallobleomycins, the mechanism of this process is given primary attention. Current understanding of the structures of the coordination sites of various metallobleomycins, their thermodynamic stabilities, their propensity to form adduct species, and their properties in ligand substitution reactions provide a foundation for consideration of the chemistry of dioxygen activation as well as a basis for thinking about the metal-speciation of bleomycin in biological systems. Oxidation-reduction pathways of iron-bleomycin, copper-bleomycin, and other metal-bleomycin species with O2 are then examined, including information on photochemical activation. With this background, structural and thermodynamic features of the binding interactions of DNA with bleomycin, its metal complexes, and adducts of metallobleomycins are reviewed. Then, the DNA cleavage reaction involving iron-bleomycin is scrutinized on the basis of the preceding discussion. Particular emphasis is placed on the constraints which the presence of DNA places on the mechanism of dioxygen activation. Similarly, the reactions of other metalloforms of bleomycin with DNA are reviewed. The last topic is an analysis of current understanding of the relationship of bleomycin-induced cellular DNA damage to the model developed above, which has evolved on the basis of chemical experimentation. Consideration is given to the question of the importance of DNA strand breakage caused by bleomycin for the mechanism of cytotoxic activity of the drug.
Collapse