1
|
Kierzek E, Kierzek R, Turner DH, Catrina IE. Facilitating RNA structure prediction with microarrays. Biochemistry 2006; 45:581-93. [PMID: 16401087 PMCID: PMC4070881 DOI: 10.1021/bi051409+] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Determining RNA secondary structure is important for understanding structure-function relationships and identifying potential drug targets. This paper reports the use of microarrays with heptamer 2'-O-methyl oligoribonucleotides to probe the secondary structure of an RNA and thereby improve the prediction of that secondary structure. When experimental constraints from hybridization results are added to a free-energy minimization algorithm, the prediction of the secondary structure of Escherichia coli 5S rRNA improves from 27 to 92% of the known canonical base pairs. Optimization of buffer conditions for hybridization and application of 2'-O-methyl-2-thiouridine to enhance binding and improve discrimination between AU and GU pairs are also described. The results suggest that probing RNA with oligonucleotide microarrays can facilitate determination of secondary structure.
Collapse
Affiliation(s)
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Douglas H. Turner
- To whom correspondence should be addressed. Phone: (585) 275-3207. Fax: (585) 276-0205.
| | | |
Collapse
|
2
|
Barciszewska MZ, Erdmann VA, Barciszewski J. Ribosomal 5S RNA: tertiary structure and interactions with proteins. Biol Rev Camb Philos Soc 1996; 71:1-25. [PMID: 8603119 DOI: 10.1111/j.1469-185x.1996.tb00740.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- M Z Barciszewska
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Poznań, Poland
| | | | | |
Collapse
|
3
|
Kim JH, Marshall AG. Structural investigation of helices II, III, and IV of B. megaterium 5S ribosomal RNA by molecular dynamics calculations. Biopolymers 1992; 32:1263-70. [PMID: 1384750 DOI: 10.1002/bip.360320915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The structures of the helices II-III region and the helix IV region of B. megaterium 5S rRNA have been examined by means of energy minimization and molecular dynamics calculations. Calculated distances between neighboring hydrogen-bonded imino protons in helices II, III, and IV were between 3.5 and 4.5 A. The overall axis for the helices II-III region is warped rather than straight. Formation of additional Watson-Crick base pairs in loop B and loop C was not evident from the atomic positions calculated by molecular dynamics. Bases in loop C are well stacked, showing no significant change during dynamics. Bulge migration in helix III does not seem to be possible; the helices II-III region prefers one conformation. Helix II is more stable than helix III. Five base pairs in helix IV were sufficiently stable to establish that helix IV is terminated by a hairpin loop of three nucleotides. U87 protrudes from loop D. Structures of the helices II-III segment and the helix IV segment of B. megaterium 5S rRNA obtained by molecular dynamics were generally consistent with the solution structure inferred from high-field proton nmr spectroscopy.
Collapse
Affiliation(s)
- J H Kim
- Department of Chemistry, Ohio State University, Columbus 43210
| | | |
Collapse
|
4
|
Ciesiołlka J, Lorenz S, Erdmann VA. Different conformational forms of Escherichia coli and rat liver 5S rRNA revealed by Pb(II)-induced hydrolysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 204:583-9. [PMID: 1541274 DOI: 10.1111/j.1432-1033.1992.tb16671.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Different stable forms of Escherichia coli and rat liver 5S rRNA have been probed by Pb(II)-induced hydrolysis. In the native A forms of 5S rRNA, Pb2+ reveal single-stranded RNA stretches and regions of increased conformational flexibility or distorted by the presence of bulged nucleotides. Hydrolysis of urea/EDTA-treated E. coli 5S rRNA (B form) shows the presence of two strong helical domains; helix A retained from the A form and a helix composed of RNA regions G33-C42 and G79-C88. Other RNA regions resistant to hydrolysis may be involved in alternative base pairing, causing conformational heterogeneity of that form. Pb(II)-induced hydrolysis distinguishes two different forms of rat liver 5S rRNA; the native A form and the form obtained by renaturation of 5S rRNA in the presence of EDTA. Pb(II)-hydrolysis data suggest that both forms are highly structured. In the latter form, the orientation of the bulged C66 is changed with respect to helix B. At the same time, a new helical segment is possibly formed, composed of nucleotides from helix C and loop c on one side and from helix E and loop d' on the other.
Collapse
Affiliation(s)
- J Ciesiołlka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań
| | | | | |
Collapse
|
5
|
Ciesiołka J, Lorenz S, Erdmann VA. Structural analysis of three prokaryotic 5S rRNA species and selected 5S rRNA--ribosomal-protein complexes by means of Pb(II)-induced hydrolysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 204:575-81. [PMID: 1541273 DOI: 10.1111/j.1432-1033.1992.tb16670.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lead ions have been applied to the structural analysis of 5S rRNA from Thermus thermophilus, Bacillus stearothermophilus and Escherichia coli. Based on the distribution of Pb(II)-induced cleavages, some minor modifications of the consensus secondary structure model of 5S rRNA are proposed. They include the possible base pairing between nucleotides at positions 11 and 109, as well as changes in secondary interactions within the helix B region. The 'prokaryotic arm' region is completely resistant to hydrolysis in the three RNA species, suggesting that it is a relatively stable, highly ordered structure. Hydrolysis of E. coli 5S rRNA complexed with ribosomal protein L18 shows, besides the shielding effect of the bound protein, a highly enhanced cleavage between A108 and A109. It supports the concept that the major L18-induced conformational change involves the junction of helices A, B and D.
Collapse
Affiliation(s)
- J Ciesiołka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań
| | | | | |
Collapse
|
6
|
Johnson KH, Gray DM. An estimate of the nearest neighbor base-pair content of 5S RNA using CD and absorption spectroscopy. Biopolymers 1991; 31:385-95. [PMID: 1863690 DOI: 10.1002/bip.360310404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We analyzed the CD and uv absorption spectra of 5S RNA from Escherichia coli using the method developed in the preceding paper. The analysis of spectra of 5S RNA at 20 degrees C in 0.1M NaClO4, 2.5 mM Na+ (phosphate), pH 7.0, and 0.5 mM MgSO4 gave 7 +/- 3.6 A.U base pairs, 25 +/- 3.6 G.C base pairs, and 7.5 +/- 3.6 G.U base pairs. Estimates of nearest neighbor base pairs were more consistent with the Pieler-Erdmann and the Gewirth-Moore secondary structure models than with the Fox-Woese or the Burns-Luoma-Marshall models. We also examined the structure of 5S RNA as a function of temperature. The melting profile exhibited two transitions--one at about 35 degrees C and one above 50 degrees C. Our spectral data showed that helices I and II were stable during the first transition, and agreed with other data that helix III was the most likely helix to have melted. The results from this in-depth study of 5S RNA indicate that our method of analysis should be useful for studying the secondary structures of other small, unmodified RNAs.
Collapse
Affiliation(s)
- K H Johnson
- Program in Molecular and Cell Biology, University of Texas at Dallas, Richardson 75083-0688
| | | |
Collapse
|
7
|
|
8
|
Romby P, Westhof E, Toukifimpa R, Mache R, Ebel JP, Ehresmann C, Ehresmann B. Higher order structure of chloroplastic 5S ribosomal RNA from spinach. Biochemistry 1988; 27:4721-30. [PMID: 3167011 DOI: 10.1021/bi00413a021] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The secondary and tertiary structure of chloroplastic 5S ribosomal RNA from spinach was investigated by the use of several chemical and enzymatic structure probes. The four bases were monitored at one of their Watson-Crick base-pairing positions with dimethyl sulfate [at A(N1) and C(N3)] and with 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate [at G(N1) and U(N3)]. Position N7 of purines was probed with diethyl pyrocarbonate (adenines) and with dimethyl sulfate (guanines). Ethylnitrosourea was used to probe phosphate involved in tertiary interaction or in cation coordination. In order to estimate the degree of stability of helices, the various chemical reagents were employed under "native" conditions (300 mM KCl and 20 mM magnesium at 37 degrees C), under "semidenaturing" conditions [1 mM ethylenediaminetetraacetic acid (EDTA) at 37 degrees C], and under denaturing conditions (1 mM EDTA at 90 degrees C). Unstructured regions were also tested with single-strand-specific nucleases T1, U2, and S1 and double-stranded or stacked regions with RNase V1 from cobra Naja naja oxiana venom. The results confirm the existence of the five helices and the two external loops proposed in the consensus model of 5S rRNA. However, the regions depicted as unpaired internal loops appear to be folded into a more complex conformation. A three-dimensional model derived from the present data and graphic modeling for a region encompassing helix IV, helix V, loop D, and loop E (nucleotides 70-110) is proposed. Nucleotides in the so-called loop E (73-79/100-106) display unusual features: Noncanonical base pairs (A-A and A-G) are formed, and three nucleotides (C75, U78, and U105) are bulging out. This region adopts an unwound and extended conformation that can be well suited for tertiary interactions or for protein binding. Several bases and phosphates candidate for the tertiary folding of the RNA were also identified.
Collapse
Affiliation(s)
- P Romby
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
9
|
van Belkum A, Verlaan P, Kun JB, Pleij C, Bosch L. Temperature dependent chemical and enzymatic probing of the tRNA-like structure of TYMV RNA. Nucleic Acids Res 1988; 16:1931-50. [PMID: 2833723 PMCID: PMC338191 DOI: 10.1093/nar/16.5.1931] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In this paper we report on the thermal unfolding of the tRNA-like structure present at the 3' end of turnip yellow mosaic virus (TYMV) RNA. Diethyl pyrocarbonate (DEP), sodium bisulphite, nuclease S1 and ribonuclease T1 were used as structure probes at a broad range of temperatures. In this way most of the nucleotides present in the tRNA-like moiety were analysed. The melting behaviour of both secondary and tertiary interactions could be followed on the basis of the temperature dependent accessibility of the individual nucleotides or bases towards the various probes. The three-dimensional model of the tRNA-like domain (Dumas et al., J. Biomol. Struct. and Dyn. 4, 707 (1987] was supported by the results to a large extent. The interactions occurring between the T- and D-loop appear to be more complex than proposed in the latter model. Additional evidence for the presence of the RNA pseudoknot (Rietveld et al., Nucleic Acids Res. 10, 1929 (1982] was derived from the fact that the three coaxially stacked helical segments in the aminoacylacceptor arm displayed different melting transitions under certain experimental conditions. Aspects of melting behaviour and thermal stability of double helical regions within the tRNA-like structure are discussed, as well as the applicability of nucleases and modifying reagents at various temperatures in the analysis of RNA structure.
Collapse
Affiliation(s)
- A van Belkum
- Department of Biochemistry, University of Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
10
|
Ehresmann C, Baudin F, Mougel M, Romby P, Ebel JP, Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res 1987; 15:9109-28. [PMID: 2446263 PMCID: PMC306456 DOI: 10.1093/nar/15.22.9109] [Citation(s) in RCA: 583] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
During these last years, a powerful methodology has been developed to study the secondary and tertiary structure of RNA molecules either free or engaged in complex with proteins. This method allows to test the reactivity of every nucleotide towards chemical or enzymatic probes. The detection of the modified nucleotides and RNase cleavages can be conducted by two different paths which are oriented both by the length of the studied RNA and by the nature of the probes used. The first one uses end-labeled RNA molecule and allows to detect only scissions in the RNA chain. The second approach is based on primer extension by reverse transcriptase and detects stops of transcription at modified or cleaved nucleotides. The synthesized cDNA fragments are then sized by electrophoresis on polyacrylamide:urea gels. In this paper, the various structure probes used so far are described, and their utilization is discussed.
Collapse
Affiliation(s)
- C Ehresmann
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
11
|
Erdmann VA, Wolters J, Pieler T, Digweed M, Specht T, Ulbrich N. Evolution of organisms and organelles as studied by comparative computer and biochemical analyses of ribosomal 5S RNA structure. Ann N Y Acad Sci 1987; 503:103-24. [PMID: 3113313 DOI: 10.1111/j.1749-6632.1987.tb40602.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The results documented in this publication demonstrate that for evolutionary studies the ribosomal 5S rRNA is a suitable object for such an investigation and that as many methods as possible should be consulted. In this study the results of biochemical and chemical experiments were combined with those of computer sequence analyses, and they revealed that these methods complement each other nicely. We are currently at a state at which we are able to well define the secondary structures of the 5S rRNAs for eubacteria, organelles, archaebacteria, and eukaryotes and we are even able to propose a secondary structure for a Ur-5S rRNA. It is also clear that in the future the present studies should be continued and extended in such a way that the tertiary structures of these molecules will become known.
Collapse
|