1
|
Zhang H, Liu S, Ren T, Niu M, Liu X, Liu C, Wang H, Yin W, Xia X. Crucial Abiotic Stress Regulatory Network of NF-Y Transcription Factor in Plants. Int J Mol Sci 2023; 24:ijms24054426. [PMID: 36901852 PMCID: PMC10002336 DOI: 10.3390/ijms24054426] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Nuclear Factor-Y (NF-Y), composed of three subunits NF-YA, NF-YB and NF-YC, exists in most of the eukaryotes and is relatively conservative in evolution. As compared to animals and fungi, the number of NF-Y subunits has significantly expanded in higher plants. The NF-Y complex regulates the expression of target genes by directly binding the promoter CCAAT box or by physical interaction and mediating the binding of a transcriptional activator or inhibitor. NF-Y plays an important role at various stages of plant growth and development, especially in response to stress, which attracted many researchers to explore. Herein, we have reviewed the structural characteristics and mechanism of function of NF-Y subunits, summarized the latest research on NF-Y involved in the response to abiotic stresses, including drought, salt, nutrient and temperature, and elaborated the critical role of NF-Y in these different abiotic stresses. Based on the summary above, we have prospected the potential research on NF-Y in response to plant abiotic stresses and discussed the difficulties that may be faced in order to provide a reference for the in-depth analysis of the function of NF-Y transcription factors and an in-depth study of plant responses to abiotic stress.
Collapse
Affiliation(s)
- Han Zhang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shujing Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tianmeng Ren
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mengxue Niu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chao Liu
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Houling Wang
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Weilun Yin
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (W.Y.); (X.X.)
| | - Xinli Xia
- National Engineering Research Center of Tree Breeding and Ecological Remediation, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (W.Y.); (X.X.)
| |
Collapse
|
2
|
Comprehensive Analyses of Four PtoNF-YC Genes from Populus tomentosa and Impacts on Flowering Timing. Int J Mol Sci 2022; 23:ijms23063116. [PMID: 35328537 PMCID: PMC8950544 DOI: 10.3390/ijms23063116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Flowering is an important link in the life process of angiosperms, and it is also an important sign of the transformation of plants from vegetative to reproductive growth. Although the flowering regulation network of Arabidopsis is well-understood, there has been little research on the molecular mechanisms of perennial woody plant flower development regulation. Populus tomentosa is a unique Chinese poplar species with fast growth, strong ecological adaptability, and a long lifecycle. However, it has a long juvenile phase, which seriously affects its breeding process. Nuclear factor-Y (NF-Y) is an important type of transcription factor involved in the regulation of plant flowering. However, there are few reports on PtoNF-Y gene flowering regulation, and the members of the PtNF-YC subfamily are unknown. In this study, four key genes were cloned and analyzed for sequence characteristics, gene structure, genetic evolution, expression patterns, and subcellular localization. The plant expression vector was further constructed, and transgenic Arabidopsis and P. tomentosa plants were obtained through genetic transformation and a series of molecular tests. The flowering time and other growth characteristics were analyzed. Finally, the expression level of flowering genes was detected by quantitative PCR, the interaction between PtoNF-YC and PtoCOL proteins was measured using the yeast two-hybrid system to further explain the flowering regulation mechanism, and the molecular mechanisms by which PtNF-YC6 and PtNF-YC8 regulate poplar flowering were discussed. These results lay the foundation for elucidating the molecular regulation mechanism of PtoNF-YC in flowering and furthering the molecular design and breeding of poplar, while providing a reference for other flowering woody plants.
Collapse
|
3
|
Li S, Li K, Ju Z, Cao D, Fu D, Zhu H, Zhu B, Luo Y. Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening. BMC Genomics 2016; 17:36. [PMID: 26742635 PMCID: PMC4705811 DOI: 10.1186/s12864-015-2334-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/18/2015] [Indexed: 11/10/2022] Open
Abstract
Background Fruit ripening is a complex developmental process that depends on a coordinated regulation of numerous genes, including ripening-related transcription factors (TFs), fruit-related microRNAs, DNA methylation and chromatin remodeling. It is known that various TFs, such as MADS-domain, MYB, AP2/ERF and SBP/SPL family proteins play key roles in modulating ripening. However, little attention has been given to members of the large NF-Y TF family in this regard, although genes in this family are known to have important functions in regulating plant growth, development, and abiotic or biotic stress responses. Results In this study, the evolutionary relationship between Arabidopsis thaliana and tomato (Solanum lycopersicum) NF-Y genes was examined to predict similarities in function. Furthermore, through gene expression analysis, 13 tomato NF-Y genes were identified as candidate regulators of fruit ripening. Functional studies involving suppression of NF-Y gene expression using virus induced gene silencing (VIGS) indicated that five NF-Y genes, including two members of the NF-YB subgroup (Solyc06g069310, Solyc07g065500) and three members of the NF-YA subgroup (Solyc01g087240, Solyc08g062210, Solyc11g065700), influence ripening. In addition, subcellular localization analyses using NF-Y proteins fused to a green fluorescent protein (GFP) reporter showed that the three NF-YA proteins accumulated in the nucleus, while the two NF-YB proteins were observed in both the nucleus and cytoplasm. Conclusions In this study, we identified tomato NF-Y genes by analyzing the tomato genome sequence using bioinformatics approaches, and characterized their chromosomal distribution, gene structures, phylogenetic relationship and expression patterns. We also examined their biological functions in regulating tomato fruit via VIGS and subcellular localization analyses. The results indicated that five NF-Y transcription factors play roles in tomato fruit ripening. This information provides a platform for further investigation of their biological functions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2334-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing, 100083, Peoples Republic of China.
| | - Ka Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing, 100083, Peoples Republic of China.
| | - Zheng Ju
- The College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing, 100083, Peoples Republic of China.
| | - Dongyan Cao
- The College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing, 100083, Peoples Republic of China.
| | - Daqi Fu
- The College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing, 100083, Peoples Republic of China.
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing, 100083, Peoples Republic of China.
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing, 100083, Peoples Republic of China.
| | - Yunbo Luo
- The College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, Beijing, 100083, Peoples Republic of China.
| |
Collapse
|
4
|
Hilioti Z, Ganopoulos I, Bossis I, Tsaftaris A. LEC1-LIKE paralog transcription factor: how to survive extinction and fit in NF-Y protein complex. Gene 2014; 543:220-33. [PMID: 24727055 DOI: 10.1016/j.gene.2014.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 11/16/2022]
Abstract
Transcription factor function is crucial for eukaryotic systems. The presence of transcription factor families in genomes represents a significant technical challenge for functional studies. To understand their function, we must understand how they evolved and maintained by organisms. Based on genome scale searches for homologs of LEAFY COTYLEDON-LIKE (L1L; AtNF-YB6), NF-YB transcription factor, we report the discovery and annotation of a complete repertoire of thirteen novel genes that belong to the L1L paralogous gene family of Solanum lycopersicum. Gene duplication events within the species resulted in the expansion of the L1L family. Sequence and structure-based phylogenetic analyses revealed two distinct groups of L1Ls in tomato. Natural selection appears to have contributed to the asymmetric evolution of paralogs. Our results point to key differences among SlL1L paralogs in the presence of motifs, structural features, cysteine composition and expression patterns during plant and fruit development. Furthermore, differences in the binding domains of L1L members suggest that some of them evolved new binding specificities. These results reveal dramatic functional diversification of L1L paralogs for their maintenance in tomato genome. Our comprehensive insights on tomato L1L family should provide the basis for further functional and genetic experimentation.
Collapse
Affiliation(s)
- Zoe Hilioti
- Institute of Applied Biosciences, CERTH, Thermi 57001, Thessaloniki, Greece.
| | - Ioannis Ganopoulos
- Institute of Applied Biosciences, CERTH, Thermi 57001, Thessaloniki, Greece; Department of Genetics and Plant Breeding, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Ioannis Bossis
- Institute of Applied Biosciences, CERTH, Thermi 57001, Thessaloniki, Greece; Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, Avrum Gudelski Building, College Park, MD 20742, USA.
| | - Athanasios Tsaftaris
- Institute of Applied Biosciences, CERTH, Thermi 57001, Thessaloniki, Greece; Department of Genetics and Plant Breeding, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
5
|
Bernard V, Lecharny A, Brunaud V. Improved detection of motifs with preferential location in promoters. Genome 2011; 53:739-52. [PMID: 20924423 DOI: 10.1139/g10-042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Many transcription factor binding sites (TFBSs) involved in gene expression regulation are preferentially located relative to the transcription start site. This property is exploited in in silico prediction approaches, one of which involves studying the local overrepresentation of motifs using a sliding window to scan promoters with considerable accuracy. Nevertheless, the consequences of the choice of the sliding window size have never before been analysed. We propose an automatic adaptation of this size to each motif distribution profile. This approach allows a better characterization of the topological constraints of the motifs and the lists of genes containing them. Moreover, our approach allowed us to highlight a nonconstant frequency of occurrence of spurious motifs that could be counter-selected close to their functional area. Therefore, to improve the accuracy of in silico prediction of TFBSs and the sensitivity of the promoter cartography, we propose, in addition to automatic adaptation of window size, consideration of the nonconstant frequency of motifs in promoters.
Collapse
Affiliation(s)
- Virginie Bernard
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - CNRS 8114 - UEVE, 91057 Evry CEDEX, France
| | | | | |
Collapse
|
6
|
Weirauch MT, Hughes TR. A catalogue of eukaryotic transcription factor types, their evolutionary origin, and species distribution. Subcell Biochem 2011; 52:25-73. [PMID: 21557078 DOI: 10.1007/978-90-481-9069-0_3] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Transcription factors (TFs) play key roles in the regulation of gene expression by binding in a sequence-specific manner to genomic DNA. In eukaryotes, DNA binding is achieved by a wide range of structural forms and motifs. TFs are typically classified by their DNA-binding domain (DBD) type. In this chapter, we catalogue and survey 91 different TF DBD types in metazoa, plants, fungi, and protists. We briefly discuss well-characterized TF families representing the major DBD superclasses. We also examine the species distributions and inferred evolutionary histories of the various families, and the potential roles played by TF family expansion and dimerization.
Collapse
Affiliation(s)
- Matthew T Weirauch
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada,
| | | |
Collapse
|
7
|
Ito Y, Zhang Y, Dangaria S, Luan X, Diekwisch TGH. NF-Y and USF1 transcription factor binding to CCAAT-box and E-box elements activates the CP27 promoter. Gene 2010; 473:92-9. [PMID: 21078375 DOI: 10.1016/j.gene.2010.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/26/2010] [Accepted: 11/02/2010] [Indexed: 11/18/2022]
Abstract
The maintenance and differentiation of embryonic stem cells (ES cells) depends on the regulation of gene expression through the coordinated binding of transcription factors to regulatory promoter elements. One of the genes involved in embryonic development is the chromatin factor CP27. Previously, we have shown that NF-Y interacted with the CP27 proximal promoter CCAAT-box. Here we report that CP27 gene expression in mouse ES cells is controlled by CCAAT and E-box cis-acting regulatory elements and their corresponding transcription factors NF-Y and USF1. Specifically, USF1 interacts with the E-box of the CP27 proximal promoter and NF-Y interacts with the CCAAT-box. NF-Y and USF1 also interacted with each other and activated the CP27 promoter in a synergistic fashion. Together, these studies demonstrate that gene expression of the chromatin factor CP27 is regulated through the interaction of the transcription factors NF-Y and USF1 with the CP27 proximal promoter.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
8
|
Armisén D, Lecharny A, Aubourg S. Unique genes in plants: specificities and conserved features throughout evolution. BMC Evol Biol 2008; 8:280. [PMID: 18847470 PMCID: PMC2576244 DOI: 10.1186/1471-2148-8-280] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 10/10/2008] [Indexed: 11/10/2022] Open
Abstract
Background Plant genomes contain a high proportion of duplicated genes as a result of numerous whole, segmental and local duplications. These duplications lead up to the formation of gene families, which are the usual material for many evolutionary studies. However, all characterized genomes include single-copy (unique) genes that have not received much attention. Unlike gene duplication, gene loss is not an unspecific mechanism but is rather influenced by a functional selection. In this context, we have established and used stringent criteria in order to identify suitable sets of unique genes present in plant proteomes. Comparisons of unique genes in the green phylum were used to characterize the gene and protein features exhibited by both conserved and species-specific unique genes. Results We identified the unique genes within both A. thaliana and O. sativa genomes and classified them according to the number of homologs in the alternative species: none (U{1:0}), one (U{1:1}) or several (U{1:m}). Regardless of the species, all the genes in these groups present some conserved characteristics, such as small average protein size and abnormal intron number. In order to understand the origin and function of unique genes, we further characterized the U{1:1} gene pairs. The possible involvement of sequence convergence in the creation of U{1:1} pairs was discarded due to the frequent conservation of intron positions. Furthermore, an orthology relationship between the two members of each U{1:1} pair was strongly supported by a high conservation in the protein sizes and transcription levels. Within the promoter of the unique conserved genes, we found a number of TATA and TELO boxes that specifically differed from their mean number in the whole genome. Many unique genes have been conserved as unique through evolution from the green alga Ostreococcus lucimarinus to higher plants. Plant unique genes may also have homologs in bacteria and we showed a link between the targeting towards plastids of proteins encoded by plant nuclear unique genes and their homology with a bacterial protein. Conclusion Many of the A. thaliana and O. sativa unique genes are conserved in plants for which the ancestor diverged at least 725 million years ago (MYA). Half of these genes are also present in other eukaryotic and/or prokaryotic species. Thus, our results indicate that (i) a strong negative selection pressure has conserved a number of genes as unique in genomes throughout evolution, (ii) most unique genes are subjected to a low divergence rate, (iii) they have some features observed in housekeeping genes but for most of them there is no functional annotation and (iv) they may have an ancient origin involving a possible gene transfer from ancestral chloroplasts or bacteria to the plant nucleus.
Collapse
Affiliation(s)
- David Armisén
- Unité de Recherche en Génomique Végetale , UMR INRA 1165 - CNRS 8114 - Université d'Evry Val d'Essonne, 2 rue Gaston Crémieux, CP 5708, F-91057 Evry Cedex, France.
| | | | | |
Collapse
|
9
|
Kumimoto RW, Adam L, Hymus GJ, Repetti PP, Reuber TL, Marion CM, Hempel FD, Ratcliffe OJ. The Nuclear Factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis. PLANTA 2008; 228:709-23. [PMID: 18600346 DOI: 10.1007/s00425-008-0773-6] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 06/17/2008] [Indexed: 05/18/2023]
Abstract
Accumulating evidence supports a role for members of the plant Nuclear Factor Y (NF-Y) family of CCAAT-box binding transcription factors in the regulation of flowering time. In this study we have used a genetic approach to show that the homologous proteins NF-YB3 and NF-YB2 have comparable activities and play additive roles in the promotion of flowering, specifically under inductive photoperiodic conditions. We demonstrate that NF-YB2 and NF-YB3 are both essential for the normal induction of flowering by long-days and act through regulation of the expression of FLOWERING LOCUS T (FT). Using an ELISA-based in-vitro assay, we provide a novel demonstration that plant NF-YB subunits are capable of directly binding to a CCAAT-box containing region of the FLOWERING LOCUS T promoter as part of an NF-Y trimer in combination with the yeast HAP2 and HAP5 subunits. These results support an emerging model in which NF-Y complexes provide a component of the DNA target specificity for transcriptional regulators such as CONSTANS.
Collapse
|
10
|
Paradkar PN, Roth JA. Expression of the 1B isoforms of divalent metal transporter (DMT1) is regulated by interaction of NF-Y with a CCAAT-box element near the transcription start site. J Cell Physiol 2007; 211:183-8. [PMID: 17262811 DOI: 10.1002/jcp.20932] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The 1B isoforms of the divalent metal transporter (DMT1) have recently been shown to be regulated transcriptionally via NF-kappaB but whether other regulatory elements are present on this promoter, however, have not been determined. Accordingly, studies were performed to delineate a minimal promoter region responsible for basal expression of these isoforms of DMT1. Promoter analysis has established that the 1B promoter is a TATA-less promoter containing a common CCAAT-box element conserved in mouse, rat, and human. Using luciferase reporter assays, it was found that mutation of this sequence leads to more than 95% reduction in the basal activity in mouse P19 cells. Using EMSA and ChIP assay, it was confirmed that NF-YA protein subunit can bind specifically to this site. Transfecting these cells with a dominant negative (DN) form of NF-YA leads to approximately 60% decrease in luciferase activity and approximately 65% decrease in 1B form of mRNA. To determine the location of the CCAAT-box in relation to the transcription start site, 5' RACE was performed. Results of these studies reveal that the CCAAT-box resides at position -6 to -2 upstream from the transcriptional start site. These data demonstrate that binding of NF-Y to this CCAAT-box domain is responsible for the basal regulation of 1B isoforms of DMT1 mRNA.
Collapse
Affiliation(s)
- Prasad N Paradkar
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214, USA
| | | |
Collapse
|
11
|
Howcroft TK, Singer DS. Expression of nonclassical MHC class Ib genes: comparison of regulatory elements. Immunol Res 2003; 27:1-30. [PMID: 12637766 DOI: 10.1385/ir:27:1:1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Peptide binding proteins of the major histocompatibility complex consist of the "classical" class Ia and "nonclassical" class Ib genes. The gene organization and structure/function relationship of the various exons comprising class I proteins are very similar among the class Ia and class Ib genes. Although the tissue-specific patterns of expression of these two gene families are overlapping, many class Ib genes are distinguished by relative low abundance and/or limited tissue distribution. Further, many of the class Ib genes serve specialized roles in immune responses. Given that the coding sequences of the class Ia and class Ib genes are highly homologous we sought to examine the promoter regions of the various class Ib genes by comparison to the well characterized promoter elements regulating expression of the class Ia genes. This analysis revealed a surprising complexity of promoter structures among all class I genes and few instances of conservation of class Ia promoter regulatory elements among the class Ib genes.
Collapse
Affiliation(s)
- T Kevin Howcroft
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1360, USA.
| | | |
Collapse
|
12
|
Abstract
Signal search analysis is a general method to discover and characterize sequence motifs that are positionally correlated with a functional site (e.g. a transcription or translation start site). The method has played an instrumental role in the analysis of eukaryotic promoter elements. The signal search analysis server provides access to four different computer programs as well as to a large number of precompiled functional site collections. The programs offered allow: (i) the identification of non-random sequence regions under evolutionary constraint; (ii) the detection of consensus sequence-based motifs that are over- or under-represented at a particular distance from a functional site; (iii) the analysis of the positional distribution of a consensus sequence- or weight matrix-based sequence motif around a functional site; and (iv) the optimization of a weight matrix description of a locally over-represented sequence motif. These programs can be accessed at: http://www.isrec.isb-sib.ch/ssa/.
Collapse
Affiliation(s)
- Giovanna Ambrosini
- ISREC Swiss Institute for Experimental Cancer Research, Ch. des Boveresses 155, 1066 Epalinges s/ Lausanne, VD, Switzerland
| | | | | | | |
Collapse
|
13
|
Abstract
The CCAAT box is one of the most common elements in eukaryotic promoters, found in the forward or reverse orientation. Among the various DNA binding proteins that interact with this sequence, only NF-Y (CBF, HAP2/3/4/5) has been shown to absolutely require all 5 nt. Analysis of a database with 178 bona fide NF-Y binding sites in 96 unrelated promoters confirms this need and points to specific additional flanking nucleotides (C, Pu, Pu on the 5'-side and C/G, A/G, G,A/C, G on the 3'-side) required for efficient binding. The frequency of CCAAT boxes appears to be relatively higher in TATA-less promoters, particularly in the reverse ATTGG orientation. In TATA-containing promoters the CCAAT box is preferentially located in the -80/-100 region (mean position -89) and is not found nearer to the Start site than -50. In TATA-less promoters it is usually closer to the +1 signal (at -66 on average) and is sometimes present in proximity to the Cap site. The consensus and location of NF-Y binding sites parallel almost perfectly a previous general statistical study on CCAAT boxes in 502 unrelated promoters. This is an indication that NF-Y is the major, if not the sole, CCAAT box recognizing protein and that it might serve different roles in TATA-containing and TATA-less promoters.
Collapse
Affiliation(s)
- R Mantovani
- Dipartimento di Genetica e Biologia dei Microrganismi, Università di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
14
|
Budworth PR, Quinn PG, Nilson JH. Multiple characteristics of a pentameric regulatory array endow the human alpha-subunit glycoprotein hormone promoter with trophoblast specificity and maximal activity. Mol Endocrinol 1997; 11:1669-80. [PMID: 9328349 DOI: 10.1210/mend.11.11.0007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Trophoblast-specific expression of the human alpha-subunit glycoprotein hormone gene requires a tightly linked array of five different regulatory elements [trophoblast-specific element (TSE), alpha-activating element (alphaACT), a tandem cAMP response element (CRE), junctional regulatory element (JRE), and a CCAAT box]. We examined their contextual contributions to trophoblast-specific expression by using transfection assays to evaluate activity of systematic block replacement mutations made within the 1500-bp 5'-flanking region of the human alpha-subunit gene. While all five elements were required for full activity, only the TSE and JRE displayed trophoblast specificity. Interestingly, the TSE-binding protein has limited tissue distribution whereas a JRE-binding protein appears trophoblast specific. Likewise, replacement studies with an AP-1 element that binds heterodimers of jun and fos indicated that this element was incapable of compensating for either the tandem CRE or JRE. This preference for both CRE- and JRE-binding proteins provides another avenue for configuring an alpha-subunit promoter with trophoblast specificity. Additional analysis with a cAMP response element binding protein (CREB)-Gal4 fusion protein further underscored the importance of CREB as well as suggested that transcriptional contributions come from both the DNA-binding domain and transactivation domain of this protein. We also examined the interactive nature of the pentameric array by placing a 15-bp random sequence between each element. Remarkably, only the insertion 3' of the CCAAT box diminished promoter activity. This suggested the absence of direct interactions between the transcriptional factors that bind each element in the array. It also suggested that the CCAAT box is position-dependent relative to the TATA box. This position dependence appeared cell-specific, as it was not manifest in a gonadotrope cell line (alphaT3-1 cells). Thus, the CCAAT box also has tissue-specific characteristics that assist in targeting expression of the alpha-subunit gene to trophoblasts. Together, these data suggest that multiple characteristics of a complex pentameric array of regulatory elements endow the alpha-subunit promoter with trophoblast specificity and maximal activity.
Collapse
Affiliation(s)
- P R Budworth
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
15
|
Heinrichs AA, Bortell R, Bourke M, Lian JB, Stein GS, Stein JL. Proximal promoter binding protein contributes to developmental, tissue-restricted expression of the rat osteocalcin gene. J Cell Biochem 1995; 57:90-100. [PMID: 7721961 DOI: 10.1002/jcb.240570110] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Osteocalcin is a 6 kD tissue-specific calcium binding protein associated with the bone extracellular matrix. The osteocalcin gene is developmentally expressed in postoproliferative rat osteoblasts with regulation at least in part at the transcriptional level. Multiple, basal promoter and enhancer elements which control transcriptional activity in response to physiological mediators, including steroid hormones, have been identified in the modularly organized osteocalcin gene promoter. The osteocalcin box (OC box) is a highly conserved basal regulatory element residing between nucleotides -99 and -76 of the proximal promoter. We recently established by in vivo competition analysis that protein interactions at the CCAAT motif, which is the central core of the rat OC box, are required for support of basal transcription [Heinrichs et al. J Cell Biochem 53:240-250, 1993]. In this study, by the combined utilization of electrophoretic mobility shift analysis, UV cross linking, and DNA affinity chromatography, we have identified a protein that binds to the rat OC box. Results are presented that support involvement of the OC box-binding protein in regulating selective expression of the osteocalcin gene during differentiation of the rat osteoblast phenotype and suggest that this protein is tissue restricted.
Collapse
Affiliation(s)
- A A Heinrichs
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655-0106
| | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- V V Solovyev
- Institute of Cytology and Genetics, Russian Academy of Science, Novosibirsk
| |
Collapse
|
17
|
Becker-André M, Hooft van Huijsduijnen R, Losberger C, Whelan J, Delamarter JF. Murine endothelial leukocyte-adhesion molecule 1 is a close structural and functional homologue of the human protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 206:401-11. [PMID: 1375914 DOI: 10.1111/j.1432-1033.1992.tb16940.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human endothelial leukocyte-adhesion molecule 1 (ELAM-1), a cell-surface glycoprotein expressed solely on cytokine-activated endothelial cells, mediates the adhesion of blood neutrophils, memory T-cells and some monocytes. ELAM-1, also known as E-selectin or leukocyte endothelial-cell-adhesion molecule 2, is a member of the lectin/epidermal-growth-factor/complement-regulatory-protein-like cell-adhesion molecule family, which includes structurally related molecules referred to as selectins. They are all involved in cell/cell adhesion, playing roles in leukocyte trafficking which are currently only partially defined. We report here the isolation and characterization of the murine equivalent of human ELAM-1. Murine ELAM-1 is encoded by a single-copy gene, spanning about 13 kb, which is structurally organized into 14 exons and 13 introns; very similar to that of its human counterpart. The exon/intron architecture exactly parallels the domain structure of the encoded protein. A murine ELAM-1-specific cDNA was cloned from heart tissue of an interleukin-1-(IL-1)-treated mouse. Its nucleotide sequence shows an overall similarity of 70% to human ELAM-1 cDNA. Transiently expressed in Cos cells, the encoded protein promotes the adhesion between recombinant cells and both human polymorphic nuclear cells, as well as HL60 cells expressing S-Lewis-x sugar moiety. Northern blot studies revealed by far the highest expression of the murine ELAM-1 gene in heart tissue and only low expression in lung tissue of IL-1-treated mice. Within the promoter, most of the recently identified regulatory elements are conserved. An exception is the nuclear factor (NF) kappa B box sequence, which, in the murine ELAM-1 promoter, does not correspond to the consensus NF kappa B sequence (Lenardo and Baltimore, 1989). Band-shift analyses show no binding to NF kappa B-like proteins. However, fusion of the murine ELAM-1 promoter to a chloramphenicol acetyltransferase reporter confers cytokine-inducible transcription, although at a lower level, when compared to the human ELAM-1 promoter. Our results demonstrate the existence of a murine homologue of the human gene and demonstrate for adhesion functional equivalence between the homologous proteins from the two species. In addition, we provide the first evidence of the utility of the murine model in addressing biological questions about the role which ELAM-1 plays in inflammation.
Collapse
Affiliation(s)
- M Becker-André
- Glaxo Institute for Molecular Biology, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Bucher P, Yagil G. Occurrence of oligopurine.oligopyrimidine tracts in eukaryotic and prokaryotic genes. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1991; 1:157-72. [PMID: 1773055 DOI: 10.3109/10425179109020767] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A program to analyse the length and frequency distribution of specific base tracts in genomic sequences is described. The frequency of oligopurine.oligopyrimidine tracts (R.Y. tracts) in a data base of 163 transcribed genes is analysed and compared. The complete genomes of SV40 virus, N. tobacum chloroplast, yeast 2 micron plasmid, bacteriophage lambda, plasmid pBR322 and the E. coli lac operon are also analyzed. A highly significant overrepresentation of oligopurine and oligopyrimidine tracts is observed in all eukaryotic genes examined, as well as in the chloroplast genome. The overrepresentation is evident in all gene subregions of the chloroplast, in the following order: intergenic regions, 3' downstream and 5' upstream (promoter), 5' and 3' untranslated, introns and coding regions. In genes coding for basic proteins, oligopurine rather than oligopyrimidine tracts are found on the coding stand. In prokaryotic genes only the longest R.Y. tracts (greater than or equal to 12) are found in excess, and are concentrated near regulatory regions. While a structural role for R.Y. tracts is most likely in intergenic regions, a functional role, as initiation sites for strand separation, is proposed for regulatory gene regions.
Collapse
Affiliation(s)
- P Bucher
- Department of Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
19
|
Bucher P. Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J Mol Biol 1990; 212:563-78. [PMID: 2329577 DOI: 10.1016/0022-2836(90)90223-9] [Citation(s) in RCA: 818] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Optimized weight matrices defining four major eukaryotic promoter elements, the TATA-box, cap signal, CCAAT-, and GC-box, are presented; they were derived by comparative sequence analysis of 502 unrelated RNA polymerase II promoter regions. The new TATA-box and cap signal descriptions differ in several respects from the only hitherto available base frequency Tables. The CCAAT-box matrix, obtained with no prior assumption but CCAAT being the core of the motif, reflects precisely the sequence specificity of the recently discovered nuclear factor NY-I/CP1 but does not include typical recognition sequences of two other purported CCAAT-binding proteins, CTF and CBP. The GC-box description is longer than the previously proposed consensus sequences but is consistent with Sp1 protein-DNA binding data. The notion of a CACCC element distinct from the GC-box seems not to be justified any longer in view of the new weight matrix. Unlike the two fixed-distance elements, neither the CCAAT- nor the GC-box occurs at significantly high frequency in the upstream regions of non-vertebrate genes. Preliminary attempts to predict promoters with the aid of the new signal descriptions were unexpectedly successful. The new TATA-box matrix locates eukaryotic transcription initiation sites as reliably as do the best currently available methods to map Escherichia coli promoters. This analysis was made possible by the recently established Eukaryotic Promoter Database (EPD) of the EMBL Nucleotide Sequence Data Library. In order to derive the weight matrices, a novel algorithm has been devised that is generally applicable to sequence motifs positionally correlated with a biologically defined position in the sequences. The signal must be sufficiently over-represented in a particular region relative to the given site, but need not be present in all members of the input sequence collection. The algorithm iteratively redefines the set of putative motif representatives from which a weight matrix is derived, so as to maximize a quantitative measure of local over-representation, an optimization criterion that naturally combines structural and positional constancy. A comprehensive description of the technique is presented in Methods and Data.
Collapse
Affiliation(s)
- P Bucher
- Department of Polymer Research, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
20
|
Kremer H, Hennig W. Isolation and characterization of a Drosophila hydei histone DNA repeat unit. Nucleic Acids Res 1990; 18:1573-80. [PMID: 2109309 PMCID: PMC330528 DOI: 10.1093/nar/18.6.1573] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Histone genes in D. hydei are organized in tandemly repeated clusters., accomodating in total 120-140 repeat units. We cloned one of the repeat units and analysed the nucleotide sequence. The repeat unit has a size of 5.1 x 10(3) base-pairs and contains one copy of each of the genes coding for the core histones and one copy coding for the histone H1. In the promoter regions of the genes we identified the presumptive cap sites and TATA boxes. Two additional sequence elements are shared by all five Drosophila hydei histone genes in the cluster. The sequence CCCTCT/G1 is found in the region upstream of the presumptive CAP sites. The sequence element AGTGAA occurs downstream of the presumptive cap sites and is, in contrast to the promoter element, also seen in the histone genes of Drosophila melanogaster. Cell-cycle dependent regulation of transcription of the Drosophila histone genes may be different from that in other eukaryotes since sequence elements involved in the regulation of cell-cycle dependent transcription are absent. Also other regulatory elements for transcription differ from those of other genes. The highly conserved H1-specific promoter sequence AAACACA and the H2B specific promoter sequence ATTTGCAT, which are involved in the cell-cycle dependent transcription of those histone genes in eukaryotes, are missing in the Drosophila genes. However at the 3' end of the genes the palindrome and the purine-rich region, both conserved sequence elements in histone genes of eukaryotes, are present. The spacer regions show a simple sequence organization. The silent site substitution rate between the coding regions of the D. hydei and D. melanogaster histone genes is at least 1.5 times higher for Drosophila than for sea urchin histone genes.
Collapse
Affiliation(s)
- H Kremer
- Department of Molecular and Developmental Genetics, Katholieke Universiteit, Nijmegen, The Netherlands
| | | |
Collapse
|