1
|
The emerging impact of tRNA modifications in the brain and nervous system. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:412-428. [PMID: 30529455 DOI: 10.1016/j.bbagrm.2018.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 01/19/2023]
Abstract
A remarkable number of neurodevelopmental disorders have been linked to defects in tRNA modifications. These discoveries place tRNA modifications in the spotlight as critical modulators of gene expression pathways that are required for proper organismal growth and development. Here, we discuss the emerging molecular and cellular functions of the diverse tRNA modifications linked to cognitive and neurological disorders. In particular, we describe how the structure and location of a tRNA modification influences tRNA folding, stability, and function. We then highlight how modifications in tRNA can impact multiple aspects of protein translation that are instrumental for maintaining proper cellular proteostasis. Importantly, we describe how perturbations in tRNA modification lead to a spectrum of deleterious biological outcomes that can disturb neurodevelopment and neurological function. Finally, we summarize the biological themes shared by the different tRNA modifications linked to cognitive disorders and offer insight into the future questions that remain to decipher the role of tRNA modifications. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Soller Matthias and Dr. Fray Rupert.
Collapse
|
2
|
Abstract
Wobble uridines (U34) are generally modified in all species. U34 modifications can be essential in metazoans but are not required for viability in fungi. In this review, we provide an overview on the types of modifications and how they affect the physico-chemical properties of wobble uridines. We describe the molecular machinery required to introduce these modifications into tRNA posttranscriptionally and discuss how posttranslational regulation may affect the activity of the modifying enzymes. We highlight the activity of anticodon specific RNases that target U34 containing tRNA. Finally, we discuss how defects in wobble uridine modifications lead to phenotypes in different species. Importantly, this review will mainly focus on the cytoplasmic tRNAs of eukaryotes. A recent review has extensively covered their bacterial and mitochondrial counterparts.1
Collapse
Affiliation(s)
- Raffael Schaffrath
- a Institut für Biologie, FG Mikrobiologie , Universität Kassel , Germany
| | - Sebastian A Leidel
- b Max Planck Institute for Molecular Biomedicine , Germany.,c Cells-in-Motion Cluster of Excellence , University of Münster , Münster , Germany.,d Medical Faculty , University of Münster , Albert-Schweitzer-Campus 1, Münster , Germany
| |
Collapse
|
3
|
Sochacka E, Bartos P, Kraszewska K, Nawrot B. Desulfuration of 2-thiouridine with hydrogen peroxide in the physiological pH range 6.6–7.6 is pH-dependent and results in two distinct products. Bioorg Med Chem Lett 2013; 23:5803-5. [DOI: 10.1016/j.bmcl.2013.08.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
|
4
|
Nawrot B, Sochacka E, Düchler M. tRNA structural and functional changes induced by oxidative stress. Cell Mol Life Sci 2011; 68:4023-32. [PMID: 21833586 PMCID: PMC3221842 DOI: 10.1007/s00018-011-0773-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/04/2011] [Accepted: 07/07/2011] [Indexed: 11/29/2022]
Abstract
Oxidatively damaged biomolecules impair cellular functions and contribute to the pathology of a variety of diseases. RNA is also attacked by reactive oxygen species, and oxidized RNA is increasingly recognized as an important contributor to neurodegenerative complications in humans. Recently, evidence has accumulated supporting the notion that tRNA is involved in cellular responses to various stress conditions. This review focuses on the intriguing consequences of oxidative modification of tRNA at the structural and functional level.
Collapse
Affiliation(s)
- Barbara Nawrot
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112, Sienkiewicza Street, 90-363 Lodz, Poland
| | - Elzbieta Sochacka
- Institute of Organic Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland
| | - Markus Düchler
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112, Sienkiewicza Street, 90-363 Lodz, Poland
| |
Collapse
|
5
|
Kraszewska K, Kaczyńska I, Jankowski S, Karolak-Wojciechowska J, Sochacka E. Desulfurization of 2-thiouracil nucleosides: conformational studies of 4-pyrimidinone nucleosides. Bioorg Med Chem 2011; 19:2443-9. [PMID: 21396827 DOI: 10.1016/j.bmc.2011.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
4-Pyrimidinone ribofuranoside (H(2)o(4)U) and 4-pyrimidinone 2'-deoxyribofuranoside (dH(2)o(4)U) were synthesized by the oxidative desulfurization of parent 2-thiouracil nucleosides with m-chloroperbenzoic acid. The crystal structures of H(2)o(4)U and dH(2)o(4)U and their conformations in solution were determined and compared with corresponding 2-thiouracil and uracil nucleosides. The absence of a large 2-thiocarbonyl/2-carbonyl group in the nucleobase moiety results in C2'-endo puckering of the ribofuranose ring (S conformer) in the crystal structure of H(2)o(4)U, which is not typical of RNA nucleosides. Interestingly, the hydrogen bonding network in the crystals of dH(2)o(4)U stabilizes the sugar moiety conformation in the C3'-endo form (N conformer), rarely found in DNA nucleosides. In aqueous solution, dH(2)o(4)U reveals a similar population of the C2'-endo conformation (65%) to that of 2'-deoxy-2-thiouridine (62%), while the 62% population of the S conformer for H(2)o(4)U is significantly different from that of the parent 2-thiouridine, for which the N conformer is dominant (71%). Such a difference may be of biological importance, as the desulfurization process of natural tRNA 2-thiouridines may occur under conditions of oxidative stress in the cell and may influence the decoding process.
Collapse
Affiliation(s)
- Karina Kraszewska
- Institute of Organic Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland
| | | | | | | | | |
Collapse
|
6
|
Sochacka E, Kraszewska K, Sochacki M, Sobczak M, Janicka M, Nawrot B. The 2-thiouridine unit in the RNA strand is desulfured predominantly to 4-pyrimidinone nucleoside under in vitro oxidative stress conditions. Chem Commun (Camb) 2011; 47:4914-6. [DOI: 10.1039/c1cc10973a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Atkins JF, Björk GR. A gripping tale of ribosomal frameshifting: extragenic suppressors of frameshift mutations spotlight P-site realignment. Microbiol Mol Biol Rev 2009; 73:178-210. [PMID: 19258537 PMCID: PMC2650885 DOI: 10.1128/mmbr.00010-08] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutants of translation components which compensate for both -1 and +1 frameshift mutations showed the first evidence for framing malleability. Those compensatory mutants isolated in bacteria and yeast with altered tRNA or protein factors are reviewed here and are considered to primarily cause altered P-site realignment and not altered translocation. Though the first sequenced tRNA mutant which suppressed a +1 frameshift mutation had an extra base in its anticodon loop and led to a textbook "yardstick" model in which the number of anticodon bases determines codon size, this model has long been discounted, although not by all. Accordingly, the reviewed data suggest that reading frame maintenance and translocation are two distinct features of the ribosome. None of the -1 tRNA suppressors have anticodon loops with fewer than the standard seven nucleotides. Many of the tRNA mutants potentially affect tRNA bending and/or stability and can be used for functional assays, and one has the conserved C74 of the 3' CCA substituted. The effect of tRNA modification deficiencies on framing has been particularly informative. The properties of some mutants suggest the use of alternative tRNA anticodon loop stack conformations by individual tRNAs in one translation cycle. The mutant proteins range from defective release factors with delayed decoding of A-site stop codons facilitating P-site frameshifting to altered EF-Tu/EF1alpha to mutant ribosomal large- and small-subunit proteins L9 and S9. Their study is revealing how mRNA slippage is restrained except where it is programmed to occur and be utilized.
Collapse
Affiliation(s)
- John F Atkins
- BioSciences Institute, University College, Cork, Ireland.
| | | |
Collapse
|
8
|
Björk GR, Huang B, Persson OP, Byström AS. A conserved modified wobble nucleoside (mcm5s2U) in lysyl-tRNA is required for viability in yeast. RNA (NEW YORK, N.Y.) 2007; 13:1245-55. [PMID: 17592039 PMCID: PMC1924908 DOI: 10.1261/rna.558707] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Transfer RNAs specific for Gln, Lys, and Glu from all organisms (except Mycoplasma) and organelles have a 2-thiouridine derivative (xm(5)s(2)U) as wobble nucleoside. These tRNAs read the A- and G-ending codons in the split codon boxes His/Gln, Asn/Lys, and Asp/Glu. In eukaryotic cytoplasmic tRNAs the conserved constituent (xm(5)-) in position 5 of uridine is 5-methoxycarbonylmethyl (mcm(5)). A protein (Tuc1p) from yeast resembling the bacterial protein TtcA, which is required for the synthesis of 2-thiocytidine in position 32 of the tRNA, was shown instead to be required for the synthesis of 2-thiouridine in the wobble position (position 34). Apparently, an ancient member of the TtcA family has evolved to thiolate U34 in tRNAs of organisms from the domains Eukarya and Archaea. Deletion of the TUC1 gene together with a deletion of the ELP3 gene, which results in the lack of the mcm(5) side chain, removes all modifications from the wobble uridine derivatives of the cytoplasmic tRNAs specific for Gln, Lys, and Glu, and is lethal to the cell. Since excess of the unmodified form of these three tRNAs rescued the double mutant elp3 tuc1, the primary function of mcm(5)s(2)U34 seems to be to improve the efficiency to read the cognate codons rather than to prevent mis-sense errors. Surprisingly, overexpression of the mcm(5)s(2)U-lacking tRNA(Lys) alone was sufficient to restore viability of the double mutant.
Collapse
Affiliation(s)
- Glenn R Björk
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
| | | | | | | |
Collapse
|
9
|
Agris PF. Decoding the genome: a modified view. Nucleic Acids Res 2004; 32:223-38. [PMID: 14715921 PMCID: PMC384350 DOI: 10.1093/nar/gkh185] [Citation(s) in RCA: 266] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 12/02/2003] [Accepted: 12/02/2003] [Indexed: 11/12/2022] Open
Abstract
Transfer RNA's role in decoding the genome is critical to the accuracy and efficiency of protein synthesis. Though modified nucleosides were identified in RNA 50 years ago, only recently has their importance to tRNA's ability to decode cognate and wobble codons become apparent. RNA modifications are ubiquitous. To date, some 100 different posttranslational modifications have been identified. Modifications of tRNA are the most extensively investigated; however, many other RNAs have modified nucleosides. The modifications that occur at the first, or wobble position, of tRNA's anticodon and those 3'-adjacent to the anticodon are of particular interest. The tRNAs most affected by individual and combinations of modifications respond to codons in mixed codon boxes where distinction of the third codon base is important for discriminating between the correct cognate or wobble codons and the incorrect near-cognate codons (e.g. AAA/G for lysine versus AAU/C asparagine). In contrast, other modifications expand wobble codon recognition, such as U*U base pairing, for tRNAs that respond to multiple codons of a 4-fold degenerate codon box (e.g. GUU/A/C/G for valine). Whether restricting codon recognition, expanding wobble, enabling translocation, or maintaining the messenger RNA, reading frame modifications appear to reduce anticodon loop dynamics to that accepted by the ribosome. Therefore, we suggest that anticodon stem and loop domain nucleoside modifications allow a limited number of tRNAs to accurately and efficiently decode the 61 amino acid codons by selectively restricting some anticodon-codon interactions and expanding others.
Collapse
Affiliation(s)
- Paul F Agris
- Department of Molecular and Structural Biochemistry, 128 Polk Hall, Campus Box 7622, North Carolina State University, Raleigh, NC 27695-7622, USA.
| |
Collapse
|
10
|
Ryckelynck M, Giegé R, Frugier M. Yeast tRNA(Asp) charging accuracy is threatened by the N-terminal extension of aspartyl-tRNA synthetase. J Biol Chem 2003; 278:9683-90. [PMID: 12486031 DOI: 10.1074/jbc.m211035200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study evaluates the role of the N-terminal extension from yeast aspartyl-tRNA synthetase in tRNA aspartylation. The presence of an RNA-binding motif in this extension, conserved in eukaryotic class IIb aminoacyl-tRNA synthetases, provides nonspecific tRNA binding properties to this enzyme. Here, it is assumed that the additional contacts the 70 amino acid-long appendix of aspartyl-tRNA synthetase makes with tRNA could be important in expression of aspartate identity in yeast. Using in vitro transcripts mutated at identity positions, it is demonstrated that the extension grants better aminoacylation efficiency but reduced specificity to the synthetase, increasing considerably the risk of noncognate tRNA mischarging. Yeast tRNA(Glu(UUC)) and tRNA(Asn(GUU)) were identified as the most easily mischarged tRNA species. Both have a G at the discriminator position, and their anticodon differs only by one change from the GUC aspartate anticodon.
Collapse
Affiliation(s)
- Michaël Ryckelynck
- Département Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogenèse, UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | | | | |
Collapse
|
11
|
Chambert S, Décout JL. RECENT DEVELOPMENTS IN THE SYNTHESIS, CHEMICAL MODIFICATIONS AND BIOLOGICAL APPLICATIONS OF SULFUR MODIFIED NUCLEOSIDES, NUCLEOTIDES AND OLIGONUCLEOTIDES. ORG PREP PROCED INT 2002. [DOI: 10.1080/00304940209355745] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Côté F, Lévesque D, Perreault JP. Natural 2',5'-phosphodiester bonds found at the ligation sites of peach latent mosaic viroid. J Virol 2001; 75:19-25. [PMID: 11119569 PMCID: PMC113893 DOI: 10.1128/jvi.75.1.19-25.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2000] [Accepted: 08/30/2000] [Indexed: 11/20/2022] Open
Abstract
Peach latent mosaic viroid (PLMVd) is a circular RNA pathogen that replicates in a DNA-independent fashion via a rolling circle mechanism. PLMVd has been shown to self-ligate in vitro primarily via the formation of 2',5'-phosphodiester bonds; however, in vivo the occurrence and necessity of this nonenzymatic mechanism are not evident. Here, we unequivocally report the presence of 2', 5'-phosphodiester bonds at the ligation site of circular PLMVd strands isolated from infected peach leaves. These bonds serve to close the linear conformers (i.e., intermediates), yielding circular ones. Furthermore, these bonds are shown to stabilize the replicational circular templates, resulting in a significant advantage in terms of viroid viability. Although the mechanism responsible for the formation of these 2',5'-phosphodiester bonds remains to be elucidated, a hypothesis describing in vivo nonenzymatic self-ligation is proposed. Most significantly, our results clearly show that 2',5'-phosphodiester bonds are still present in nature and that they are of biological importance.
Collapse
Affiliation(s)
- F Côté
- Département de Biochimie, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | |
Collapse
|
13
|
Nair TM, Myszka DG, Davis DR. Surface plasmon resonance kinetic studies of the HIV TAR RNA kissing hairpin complex and its stabilization by 2-thiouridine modification. Nucleic Acids Res 2000; 28:1935-40. [PMID: 10756194 PMCID: PMC103298 DOI: 10.1093/nar/28.9.1935] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Surface plasmon resonance (BIACORE) was used to determine the kinetic values for formation of the HIV TAR-TAR* ('kissing hairpin') RNA complex. The TAR component was also synthesized with the modified nucleoside 2-thiouridine at position 7 in the loop and the kinetics and equilibrium dissociation constants compared with the unmodified TAR hairpin. The BIACORE data show an equilibrium dissociation constant of 1.58 nM for the complex containing the s(2)U modified TAR hairpin, which is 8-fold lower than for the parent hairpin (12.5 nM). This is a result of a 2-fold faster k(a) (4.14x10(5) M(-1) s(-1) versus 2.1x10(5) M(-1) s(-1)) and a 4-fold slower k(d) (6.55x10(-4) s(-1) versus 2.63x10(-3) s(-1)). (1)H NMR imino spectra show that the secondary structure interactions involved in complex formation are retained in the s(2)U-modified complex. Magnesium has been reported to significantly stabilize the TAR-TAR* complex and we found that Mn(2+) and Ca(2+) are also strongly stabilizing, while Mg(2+) exhibited the greatest effect on the complex kinetics. The stabilizing effects of 2-thiouridine indicate that this base modification may be generally useful as an antisense RNA modification for oligonucleotide therapeutics which target RNA loops.
Collapse
Affiliation(s)
- T M Nair
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
14
|
Durant PC, Davis DR. Stabilization of the anticodon stem-loop of tRNALys,3 by an A+-C base-pair and by pseudouridine. J Mol Biol 1999; 285:115-31. [PMID: 9878393 DOI: 10.1006/jmbi.1998.2297] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NMR spectroscopy was used to determine the solution structures of RNA oligonucleotides comprising the anticodon domain of tRNALys,3. The structural effects of the pseudouridine modification at position 39 were investigated and are well correlated with changes in thermodynamic parameters derived from temperature dependent UV measurements. The pseudouridine-containing hairpin is thermodynamically more stable than the unmodified hairpin by 5 degreesC, and this corresponds with increased base stacking on the 3' side of the tRNA anticodon loop. An A+38-C32 base-pair also forms at the base of the anticodon stem with an approximate pKa of 6 for A38. Formation of the A+-C base-pair increases the Tm of both pseudouridine modified and unmodified RNA hairpins by 5-6 degreesC, and decreases the DeltaG degrees for hairpin formation by 1 kcal/mol. Solution structures were determined for both psi39 and unmodified hairpins under limiting pH conditions at pH 5 and pH 7 to assess the structural effects of both psi modification and the additional A+-C base-pair on tRNALys,3 structure. The A+38-C32 base-pair strengthens the 31-39 base-pair, and induces formation of a dynamic U33-A37 base-pair that effectively reduces the normal seven nucleotide anticodon loop to a three nucleotide UUU loop. These undermodified tRNALys,3 anticodon loops are distinctly different from those seen for other tRNAs exemplified by tRNAPhe. The conformation of the tRNA loop has important implications for the role of nucleoside modification in codon-anticodon recognition and for utilization of tRNALys,3 by HIV-1 as the native reverse transcriptase primer.
Collapse
Affiliation(s)
- P C Durant
- University of Utah, Salt Lake City, UT, 84112, USA
| | | |
Collapse
|
15
|
Krüger MK, Pedersen S, Hagervall TG, Sørensen MA. The modification of the wobble base of tRNAGlu modulates the translation rate of glutamic acid codons in vivo. J Mol Biol 1998; 284:621-31. [PMID: 9826503 DOI: 10.1006/jmbi.1998.2196] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Escherichia coli, uridine in the wobble position of tRNAGlu and tRNALys is modified to mnm5s2U34. This modification is believed to restrict the base-pairing capability, i.e. to prevent misreading of near-cognate codons and reduce the efficiency of cognate codon reading, especially of codons ending in G. We have determined the influence of the 5-methylaminomethyl and the 2-thio modifications of mnm5s2U34 in tRNAGlu on the translation rate of the glutamate codons GAA and GAG in vivo. In wild-type cells, GAG is translated slower (7. 7 codons/second) and GAA faster (18 codons/second) than the average codon (13 codons/second). Surprisingly, tRNAGlu lacking the 5-methylaminomethyl group, thus containing s2U34, translated GAA twofold faster (47 codons/second) and GAG fourfold slower (1.9 codons/second) than fully modified tRNAGlu. In contrast, tRNAGlu that contains mnm5U34 instead of mnm5s2U34 translated GAA fourfold slower (4.5 codons/second) and GAG only 20% slower (6.2 codons/second). Clearly, the 5-methylaminomethyl group of mnm5s2U34 facilitates base-pairing with G while decreasing base-pairing with A, resulting in rates of translation of GAG and GAA that approach that of the average codon. The 2-thio group increases the recognition of GAA and has only a minor effect on the decoding of GAG. Furthermore, the 2-thio group is important for aminoacylation (see the accompanying paper). These data imply that the function of mnm5s2U34 may be different from what has been suggested previously.
Collapse
Affiliation(s)
- M K Krüger
- Department of Molecular Cell Biology, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
16
|
Puglisi EV, Puglisi JD. HIV-1 A-rich RNA loop mimics the tRNA anticodon structure. NATURE STRUCTURAL BIOLOGY 1998; 5:1033-6. [PMID: 9846871 DOI: 10.1038/4141] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Interaction of HIV-1 genomic RNA and human tRNA(Lys)3 initiates viral reverse transcription. An adenosine-rich (A-rich) loop in HIV RNA mediates complex formation between tRNA and viral RNA. We have determined the structure of an A-rich loop oligonucleotide using nuclear magnetic resonance spectroscopy. The loop structure is stabilized by a noncanonical G-A pair and a U-turn motif, which leads to stacking of the conserved adenosines. The structure has similarity to the tRNA anticodon structure, and suggests possible mechanisms for its role in initiation of reverse transcription.
Collapse
Affiliation(s)
- E V Puglisi
- Department of Structural Biology, Stanford University School of Medicine, California 94305-5400, USA
| | | |
Collapse
|
17
|
Hagervall TG, Pomerantz SC, McCloskey JA. Reduced misreading of asparagine codons by Escherichia coli tRNALys with hypomodified derivatives of 5-methylaminomethyl-2-thiouridine in the wobble position. J Mol Biol 1998; 284:33-42. [PMID: 9811540 DOI: 10.1006/jmbi.1998.2162] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been suggested that modified nucleosides of the xm5(s2)U(m)34-type restrict the wobble capacity of the base, and that their function is to prevent misreading in the third position of the codon in mixed codon family boxes that encode two different amino acids. In this study in Escherichia coli, the misreading in vivo of asparagine codons in bacteriophage MS2 mRNA by different hypomodified derivatives of tRNALys, normally containing 5-methylaminomethyl-2-thiouridine (mnm5s2U34) in the wobble position, has been analysed. Contrary to what would be predicted from the general hypothesis for the function of mnm5s2U, it was found that the misreading of asparagine codons by tRNALys was greatly reduced in the mnmA (formerly asuE or trmU) and mnmE (formerly trmE) mutants which contain the hypomodified mnm5U34 and s2U34, respectively, instead of the fully modified mnm5s2U34. In addition, it was found that these hypomodified tRNAs were efficiently charged with lysine in vivo, under the growth conditions employed. The latter result is at variance with results obtained in vitro. The results are discussed in relation to the postulated function for modified nucleosides of the xm5s2U type.
Collapse
Affiliation(s)
- T G Hagervall
- Department of Microbiology, Umeå University, Umeå, S-901 87, Sweden.
| | | | | |
Collapse
|
18
|
Fossé P, Mougel M, Keith G, Westhof E, Ehresmann B, Ehresmann C. Modified nucleotides of tRNAPro restrict interactions in the binary primer/template complex of M-MuLV. J Mol Biol 1998; 275:731-46. [PMID: 9480765 DOI: 10.1006/jmbi.1997.1487] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In all retroviruses, reverse transcription is primed by a cellular tRNA, which is base-paired through its 3'-terminal 18 nucleotides to a complementary sequence on the viral RNA genome termed the primer binding site (PBS). Evidence for specific primer-template interactions in addition to this standard interaction has recently been demonstrated for several retroviruses. Here, we used chemical and enzymatic probing to investigate the interactions between Moloney murine leukemia virus (M-MuLV) RNA and its natural primer tRNAPro. The existence of extended interactions was further tested by comparing the viral RNA/tRNAPro complex with simplified complexes in which viral RNA or tRNA were reduced to the 18 nt of the PBS or to the complementary tRNA sequence. These data, combined with computer modeling provide important clues on the secondary structure and three-dimensional folding of the M-MuLV RNA/tRNAPro complex. In contrast with other retroviruses, we found that the interaction between tRNAPro and the M-MuLV RNA template is restricted to the standard PBS interaction. In this binary complex, the viral RNA is highly constrained and the rest of tRNAPro is rearranged, with the exception of the anticodon arm, leading to a very compact structure. Unexpectedly, when a synthetic tRNAPro lacking the post-transcriptional modifications is substituted for the natural tRNAPro primer, the interactions between the primer and the viral RNA are extended. Hence, our data suggest that the post-transcriptional modifications of natural tRNAPro prevent additional contacts between tRNAPro and the U5 region of M-MuLV RNA.
Collapse
Affiliation(s)
- P Fossé
- Institut de Biologie Moléculaire et Cellulaire, 15 rue Descartes, Strasbourg cedex, 67084, France
| | | | | | | | | | | |
Collapse
|
19
|
Côté F, Perreault JP. Peach latent mosaic viroid is locked by a 2',5'-phosphodiester bond produced by in vitro self-ligation. J Mol Biol 1997; 273:533-43. [PMID: 9356244 DOI: 10.1006/jmbi.1997.1355] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although some viroid-like satellite RNAs possess self-cleavage and self-ligation activities, we show that the peach latent mosaic viroid (PLMVd) is unique among all known viroids since it also has such activities. These catalytic activities should have important roles in the rolling circle replication of PLMVd. According to this proposed mechanism, self-cleavage of the multimeric strands occurs via hammerhead structures producing monomers possessing 2',3'-cyclic phosphate and 5'-hydroxyl termini. In the most stable predicted secondary structure for PLMVd these two extremities are juxtaposed, in order for self-ligation to occur. To establish the nature of the phosphodiester bond produced by self-ligation, we followed the classical procedure of complete enzymatic RNA hydrolysis coupled with thin layer chromatography fractionation. Using this procedure, we report that the self-ligation of PLMVd transcripts produces almost exclusively the 2',5' isomer (>96%). Primer extension assays also revealed that reverse transcriptase can read througth this 2', 5' linkage, suggesting that it does not prevent further replication of the viroid. Moreover, we have observed that this 2',5' linkage is resistant to the debranching activity contained in nuclear extracts, as well as being capable of preventing further viroid self-cleavage. Thus, if viroids do indeed self-ligate in vivo, the resulting 2', 5'-phosphodiester bond could contribute to the stability of these RNA species. Finally, an analysis of both the sequence and the structural requirements for hammerhead self-cleavage and self-ligation suggests that these two RNA processes may be interrelated. We hypothesize that the intramolecular self-ligation which produces circular conformers may contribute to the circularization step of the rolling circle replication, while the intermolecular non-enzymatic ligation is a potential mechanism for the sequence reassortment of viroids and viroid-like species.
Collapse
Affiliation(s)
- F Côté
- Faculté de médecine, Université de Sherbrooke, Québec, J1H 5N4, Canada
| | | |
Collapse
|
20
|
|
21
|
Kumar RK, Davis DR. Synthesis and studies on the effect of 2-thiouridine and 4-thiouridine on sugar conformation and RNA duplex stability. Nucleic Acids Res 1997; 25:1272-80. [PMID: 9092639 PMCID: PMC146581 DOI: 10.1093/nar/25.6.1272] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In order to understand the effect of 2-thiouridine (s2U) substitution on RNA structure and the potential for stabilization of tRNA codon-anticodon interactions through s2U-34 modification, a pentamer RNA sequence, Gs2UUUC, was synthesized and characterized by NMR spectroscopy. The single strand contains the UUU anticodon sequence of tRNALys with flanking GCs to increase duplex stability. Regiochemical effects of uridine thiolation were determined by comparing the structure and stability of the 2-thiouridine containing oligonucleotide with an identical sequence containing 4-thiouridine (s4U) and also the normal uridine nucleoside. Circular dichroism spectrum indicated an A-form helical conformation for Gs2UUUC which was further confirmed by 2D ROESY NMR experiments. The duplex stability of the three pentamers complexed with a 2'-O-methyl-ribonucleotide complementary strand, GmAmAmAmCm, was determined by UV thermal melting studies and by 1H NMR spectroscopy. The duplex containing s2U has a T m of 30.7 degrees C compared to 19. 0 degrees C for the unmodified control and 14.5 degrees C for the s4U containing duplex. The results from UV experiments were corroborated by imino proton NMR studies that show proton exchange rates, chemical shift differences, and NH proton linewidths indicative of the stability order s2U >U >s4U. The magnitude of the effect of s2U in our model system is comparable to the 20 degrees C stabilization observed by Grosjean and co-workers for 2-thiolation in a codon-anticodon model system composed of two tRNAs with complementary anticodon sequences [Houssier, C., Degee, P., Nicoghosian, K. and Grosjean, H. (1988) J. Biomol. Struct. Dyn., 5, 1259-1266].
Collapse
Affiliation(s)
- R K Kumar
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
22
|
Isel C, Ehresmann C, Ehresmann B, Marquet R. Determining the conformation of RNAs in solution. Application to a retroviral system: structure of the HIV-1 primer binding site region and effect of tRNA(3Lys) binding. PHARMACEUTICA ACTA HELVETIAE 1996; 71:11-9. [PMID: 8786994 DOI: 10.1016/0031-6865(95)00047-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
RNAs play a crucial and central role in a large variety of biological functions obviously linked to the wide variety of structures that they can adopt. Understanding the function of RNAs thus requires the knowledge of their two- and three-dimensional structures. We describe in detail the way to access the secondary structure of RNAs, by combining sequence comparison, secondary structure prediction by computer and, mainly, experimental data obtained by probing with chemicals and ribonucleases. These approaches were used to investigate secondary structure of the region containing the primer binding site of HIV-1 genomic RNA either free or involved in the binary complex with the replication primer tRNA(3Lys).
Collapse
Affiliation(s)
- C Isel
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | |
Collapse
|
23
|
Björk GR. Genetic dissection of synthesis and function of modified nucleosides in bacterial transfer RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995; 50:263-338. [PMID: 7538683 DOI: 10.1016/s0079-6603(08)60817-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- G R Björk
- Department of Microbiology, Umeå University, Sweden
| |
Collapse
|
24
|
Sturchler C, Lescure A, Keith G, Carbon P, Krol A. Base modification pattern at the wobble position of Xenopus selenocysteine tRNA(Sec). Nucleic Acids Res 1994; 22:1354-8. [PMID: 8031393 PMCID: PMC307989 DOI: 10.1093/nar/22.8.1354] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We examined the base modification pattern of Xenopus tRNA(Sec) using microinjection into Xenopus oocytes, with particular focus on the wobble base U34 at the first position of the anticodon. We found that U34 becomes modified to mcm5U34 (5-methylcarboxymethyluridine) in the oocyte cytoplasm in a rather complex manner. When the tRNA(Sec) gene is injected into Xenopus oocyte nuclei, psi 55 and m1A58 are readily obtained, but not mcm5U34. This will appear only upon cytoplasmic injection of the gene product arising from the first nuclear injection. In contrast, tRNA(Sec) produced by in vitro transcription with T7 RNA polymerase readily acquires i6A37, psi 55, m1A58, and mcm5U34. The latter is obtained after direct nuclear or cytoplasmic injections. It has been reported by others that mcm5Um, a 2'-O-methylated derivative of mcm5U34, also exists in rat and bovine tRNA(Sec). With both the gene product and the in vitro transcript, and using the sensitive RNase T2 assay, we were unable to detect under our conditions the presence of a dinucleotide carrying mcm5Um and that would be therefore refractory to hydrolysis. We showed that the unusual mcm5U acquisition pathway does not result from impairment of nucleocytoplasmic transport. Rather, these data can be interpreted to mean that the modification is performed by a tRNA(Sec) specific enzyme, limiting in the oocyte cytoplasm.
Collapse
Affiliation(s)
- C Sturchler
- UPR du CNRS Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Strasbourg, France
| | | | | | | | | |
Collapse
|
25
|
Watanabe K, Hayashi N, Oyama A, Nishikawa K, Ueda T, Miura K. Unusual anticodon loop structure found in E.coli lysine tRNA. Nucleic Acids Res 1994; 22:79-87. [PMID: 8127658 PMCID: PMC307749 DOI: 10.1093/nar/22.1.79] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Although both tRNA(Lys) and tRNA(Glu) of E. coli possess similar anticodon loop sequences, with the same hypermodified nucleoside 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the first position of their anticodons, the anticodon loop structures of these two tRNAs containing the modified nucleoside appear to be quite different as judged from the following observations. (1) The CD band derived from the mnm5s2U residue is negative for tRNA(Glu), but positive for tRNA(Lys). (2) The mnm5s2U monomer itself and the mnm5s2U-containing anticodon loop fragment of tRNA(Lys) show the same negative CD bands as that of tRNA(Glu). (3) The positive CD band of tRNA(Lys) changes to negative when the temperature is raised. (4) The reactivity of the mnm5s2U residue toward H2O2 is much lower for tRNA(Lys) than for tRNA(Glu). These features suggest that tRNA(Lys) has an unusual anticodon loop structure, in which the mnm5s2U residue takes a different conformation from that of tRNA(Glu); whereas the mnm5s2U base of tRNA(Glu) has no direct bonding with other bases and is accessible to a solvent, that of tRNA(Lys) exists as if in some way buried in its anticodon loop. The limited hydrolysis of both tRNAs by various RNases suggests that some differences exist in the higher order structures of tRNA(Lys) and tRNA(Glu). The influence of the unusual anticodon loop structure observed for tRNA(Lys) on its function in the translational process is also discussed.
Collapse
Affiliation(s)
- K Watanabe
- Department of Industrial Chemistry, Faculty of Engineering, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Modified nucleotides of tRNA(3Lys) modulate primer/template loop-loop interaction in the initiation complex of HIV-1 reverse transcription. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74387-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|