1
|
Abaturov LV, Nosova NG. Structure of crambin in solution, crystal and in the trajectories of molecular dynamics simulations. Biophysics (Nagoya-shi) 2013. [DOI: 10.1134/s0006350913030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
2
|
Takahashi T, Sugiura J, Nagayama K. Comparison of all atom, continuum, and linear fitting empirical models for charge screening effect of aqueous medium surrounding a protein molecule. J Chem Phys 2002. [DOI: 10.1063/1.1468222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
3
|
Caves LS, Evanseck JD, Karplus M. Locally accessible conformations of proteins: multiple molecular dynamics simulations of crambin. Protein Sci 1998; 7:649-66. [PMID: 9541397 PMCID: PMC2143962 DOI: 10.1002/pro.5560070314] [Citation(s) in RCA: 372] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Multiple molecular dynamics (MD) simulations of crambin with different initial atomic velocities are used to sample conformations in the vicinity of the native structure. Individual trajectories of length up to 5 ns sample only a fraction of the conformational distribution generated by ten independent 120 ps trajectories at 300 K. The backbone atom conformational space distribution is analyzed using principal components analysis (PCA). Four different major conformational regions are found. In general, a trajectory samples only one region and few transitions between the regions are observed. Consequently, the averages of structural and dynamic properties over the ten trajectories differ significantly from those obtained from individual trajectories. The nature of the conformational sampling has important consequences for the utilization of MD simulations for a wide range of problems, such as comparisons with X-ray or NMR data. The overall average structure is significantly closer to the X-ray structure than any of the individual trajectory average structures. The high frequency (less than 10 ps) atomic fluctuations from the ten trajectories tend to be similar, but the lower frequency (100 ps) motions are different. To improve conformational sampling in molecular dynamics simulations of proteins, as in nucleic acids, multiple trajectories with different initial conditions should be used rather than a single long trajectory.
Collapse
Affiliation(s)
- L S Caves
- Department of Chemistry and Clinical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
4
|
Kandadai NS, Reddy MR. Solution structure of papain as studied by molecular mechanics and molecular dynamics techniques. J Comput Chem 1996; 17:1328-38. [DOI: 10.1002/(sici)1096-987x(199608)17:11<1328::aid-jcc5>3.0.co;2-o] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/1995] [Accepted: 11/19/1995] [Indexed: 11/09/2022]
|
5
|
Arnold GE, Manchester JI, Townsend BD, Ornstein RL. Investigation of domain motions in bacteriophage T4 lysozyme. J Biomol Struct Dyn 1994; 12:457-74. [PMID: 7702780 DOI: 10.1080/07391102.1994.10508751] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hinge-bending in T4 lysozyme has been inferred from single amino acid mutant crystalline allomorphs by Matthews and coworkers. This raises an important question: are the different conformers in the unit cell artifacts of crystal packing forces, or do they represent different solution state structures? The objective of this theoretical study is to determine whether domain motions and hinge-bending could be simulated in T4 lysozyme using molecular dynamics. An analysis of a 400 ps molecular dynamics simulation of the 164 amino acid enzyme T4 lysozyme is presented. Molecular dynamics calculations were computed using the Discover software package (Biosym Technologies). All hydrogen atoms were modeled explicitly with the inclusion of all 152 crystallographic waters at a temperature of 300 K. The native T4 lysozyme molecular dynamics simulation demonstrated hinge-bending in the protein. Relative domain motions between the N-terminal and C-terminal domains were evident. The enzyme hinge bending sites resulted from small changes in backbone atom conformations over several residues rather than rotation about a single bound. Two hinge foci were found in the simulation. One locus comprises residues 8-14 near the C-terminal of the A helix; the other site, residues 77-83 near the C-terminal of the C helix. Comparison of several snapshot structures from the dynamics trajectory clearly illustrates domain motions between the two lysozyme lobes. Time correlated atomic motions in the protein were analyzed using a dynamical cross-correlation map. We found a high degree of correlated atomic motions in each of the domains and, to a lesser extent, anticorrelated motions between the two domains. We also found that the hairpin loop in the N-terminal lobe (residues 19-24) acted as a mobile 'flap' and exhibited highly correlated dynamic motions across the cleft of the active site, especially with residue 142.
Collapse
Affiliation(s)
- G E Arnold
- Environmental Molecular Sciences Laboratory, Pacific Northwest Laboratory, Richland, WA 99352
| | | | | | | |
Collapse
|
6
|
Grubmüller H, Tavan P. Molecular dynamics of conformational substates for a simplified protein model. J Chem Phys 1994. [DOI: 10.1063/1.467427] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Arnold GE, Ornstein RL. An evaluation of implicit and explicit solvent model systems for the molecular dynamics simulation of bacteriophage T4 lysozyme. Proteins 1994; 18:19-33. [PMID: 8146120 DOI: 10.1002/prot.340180105] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this report we examine several solvent models for use in molecular dynamics simulations of protein molecules with the Discover program from Biosym Technologies. Our goal was to find a solvent system which strikes a reasonable balance among theoretical rigor, computational efficiency, and experimental reality. We chose phage T4 lysozyme as our model protein and analyzed 14 simulations using different solvent models. We tested both implicit and explicit solvent models using either a linear distance-dependent dielectric or a constant dielectric. Use of a linear distance-dependent dielectric with implicit solvent significantly diminished atomic fluctuations in the protein and kept the protein close to the starting crystal structure. In systems using a constant dielectric and explicit solvent, atomic fluctuations were much greater and the protein was able to sample a larger portion of conformational space. A series of nonbonded cutoff distances (9.0, 11.5, 15.0, 20.0 A) using both abrupt and smooth truncation of the nonbonded cutoff distances were tested. The method of dual cutoffs was also tested. We found that a minimum nonbonded cutoff distance of 15.0 A was needed in order to properly couple solvent and solute. Distances shorter than 15.0 A resulted in a significant temperature gradient between the solvent and solute. In all trajectories using the proprietary Discover switching function, we found significant denaturation in the protein backbone; we were able to run successful trajectories only in those simulations that used no switching function. We were able to significantly reduce the computational burden by using dual cutoffs and still calculate a quality trajectory. In this method, we found that an outer cutoff distance of 15.0 A and an inner cutoff distance of 11.5 worked well. While a 10 A shell of explicit water yielded the best results, a 6 A shell of water yielded satisfactory results with nearly a 40% reduction in computational cost.
Collapse
Affiliation(s)
- G E Arnold
- Molecular Science Research Center, Pacific Northwest Laboratory, Richland, Washington 99352
| | | |
Collapse
|
8
|
Bass MB, Ornstein RL. Substrate specificity of cytochrome P450cam forL- andD- norcamphor as studied by molecular dynamics simulations. J Comput Chem 1993. [DOI: 10.1002/jcc.540140506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Ahlers M, Grainger DW, Herron JN, Lim K, Ringsdorf H, Salesse C. Quenching of fluorescein-conjugated lipids by antibodies. Quantitative recognition and binding of lipid-bound haptens in biomembrane models, formation of two-dimensional protein domains and molecular dynamics simulations. Biophys J 1992; 63:823-38. [PMID: 1420916 PMCID: PMC1262215 DOI: 10.1016/s0006-3495(92)81645-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Three model biomembrane systems, monolayers, micelles, and vesicles, have been used to study the influence of chemical and physical variables of hapten presentation at membrane interfaces on antibody binding. Hapten recognition and binding were monitored for the anti-fluorescein monoclonal antibody 4-4-20 generated against the hapten, fluorescein, in these membrane models as a function of fluorescein-conjugated lipid architecture. Specific recognition and binding in this system are conveniently monitored by quenching of fluorescein emission upon penetration of fluorescein into the antibody's active site. Lipid structure was shown to play a large role in affecting antibody quenching. Interestingly, the observed degrees of quenching were nearly independent of the lipid membrane model studied, but directly correlated with the chemical structure of the lipids. In all cases, the antibody recognized and quenched most efficiently a lipid based on dioctadecylamine where fluorescein is attached to the headgroup via a long, flexible hydrophilic spacer. Dipalmitoyl phosphatidylethanolamine containing a fluorescein headgroup demonstrated only partial binding/quenching. Egg phosphatidylethanolamine with a fluorescein headgroup showed no susceptibility to antibody recognition, binding, or quenching. Formation of two-dimensional protein domains upon antibody binding to the fluorescein-lipids in monolayers is also presented. Chemical and physical requirements for these antibody-hapten complexes at membrane surfaces have been discussed in terms of molecular dynamics simulations based on recent crystallographic models for this antibody-hapten complex (Herron et al., 1989. Proteins Struct. Funct. Genet. 5:271-280).
Collapse
Affiliation(s)
- M Ahlers
- Institut für Organische Chemie, Universität Mainz, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Guenot J, Kollman PA. Molecular dynamics studies of a DNA-binding protein: 2. An evaluation of implicit and explicit solvent models for the molecular dynamics simulation of the Escherichia coli trp repressor. Protein Sci 1992; 1:1185-205. [PMID: 1304396 PMCID: PMC2142173 DOI: 10.1002/pro.5560010912] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although aqueous simulations with periodic boundary conditions more accurately describe protein dynamics than in vacuo simulations, these are computationally intensive for most proteins. Trp repressor dynamic simulations with a small water shell surrounding the starting model yield protein trajectories that are markedly improved over gas phase, yet computationally efficient. Explicit water in molecular dynamics simulations maintains surface exposure of protein hydrophilic atoms and burial of hydrophobic atoms by opposing the otherwise asymmetric protein-protein forces. This properly orients protein surface side chains, reduces protein fluctuations, and lowers the overall root mean square deviation from the crystal structure. For simulations with crystallographic waters only, a linear or sigmoidal distance-dependent dielectric yields a much better trajectory than does a constant dielectric model. As more water is added to the starting model, the differences between using distance-dependent and constant dielectric models becomes smaller, although the linear distance-dependent dielectric yields an average structure closer to the crystal structure than does a constant dielectric model. Multiplicative constants greater than one, for the linear distance-dependent dielectric simulations, produced trajectories that are progressively worse in describing trp repressor dynamics. Simulations of bovine pancreatic trypsin were used to ensure that the trp repressor results were not protein dependent and to explore the effect of the nonbonded cutoff on the distance-dependent and constant dielectric simulation models. The nonbonded cutoff markedly affected the constant but not distance-dependent dielectric bovine pancreatic trypsin inhibitor simulations. As with trp repressor, the distance-dependent dielectric model with a shell of water surrounding the protein produced a trajectory in better agreement with the crystal structure than a constant dielectric model, and the physical properties of the trajectory average structure, both with and without a nonbonded cutoff, were comparable.
Collapse
Affiliation(s)
- J Guenot
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143
| | | |
Collapse
|
11
|
Bass MB, Paulsen MD, Ornstein RL. Substrate mobility in a deeply buried active site: analysis of norcamphor bound to cytochrome P-450cam as determined by a 201-psec molecular dynamics simulation. Proteins 1992; 13:26-37. [PMID: 1594575 DOI: 10.1002/prot.340130103] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
While cytochrome P-450cam catalyzes the hydroxylation of camphor to 5-exo-hydroxycamphor with 100% stereospecificity, norcamphor is hydroxylated by this enzyme yielding 45% 5-exo-, 47% 6-exo-, and 8% 3-exo-hydroxynorcamphor (Atkins, W.M., Sligar, S.G., J. Am. Chem. Soc. 109:3754-3760, 1987). The present study describes a 201-psec molecular dynamics (MD) stimulation of norcamphorbound cytochrome P-450cam to elucidate the relationship between substrate conformational mobility and formation of alternative products. First, these data suggest that the product specificity is, at least partially, due to the mobility of the substrate within the active site. Second, the high mobility of norcamphor in the active site leads to an average increase in separation between the heme iron and the substrate of about 1.0 A; this increase in separation may be the cause of the uncoupling of electron transfer when norcamphor is the substrate. Third, the active site water located in the norcamphorbound crystal structure possesses mobility that correlates well with the spin-state equilibrium of this enzyme-substrate complex.
Collapse
Affiliation(s)
- M B Bass
- Environmental Science Research Center, Pacific Northwest Laboratory, Richland, Washington 99352
| | | | | |
Collapse
|
12
|
Bass MB, Hopkins DF, Jaquysh WA, Ornstein RL. A method for determining the positions of polar hydrogens added to a protein structure that maximizes protein hydrogen bonding. Proteins 1992; 12:266-77. [PMID: 1372979 DOI: 10.1002/prot.340120305] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An automated method for the optimal placement of polar hydrogens in a protein structure is described. This method treats the polar, side chain hydrogens of lysine, serine, threonine, and tyrosine and the amino terminus of a protein. The program, called NETWORK, divides the potential hydrogen-bonding pairs of a protein into groups of interacting donors and acceptors. A search is conducted on each of the local groups to find an arrangement which forms the most hydrogen bonds. If two or more arrangements have the same number of hydrogen bonds, the arrangement with the shortest set of hydrogen bonds is selected. The polar hydrogens of the histidyl side chain are specifically treated, and the ionization state of this residue is allowed to change, if this change results in additional hydrogen bonds for the local group. The program will accept Protein Data Bank as well as Biosym-format coordinate files. Input and output routines can be easily modified to accept other coordinate file formats. The predictions from this method are compared to known hydrogen positions for bovine pancreatic trypsin inhibitor, insulin, RNase-A, and trypsin for which the neutron diffraction structures have been determined. The usefulness of this program is further demonstrated by a comparison of molecular dynamics simulations for the enzyme cytochrome P-450cam with and without using NETWORK.
Collapse
Affiliation(s)
- M B Bass
- Molecular Science Research Center, Pacific Northwest Laboratory, Richland, Washington 99352
| | | | | | | |
Collapse
|
13
|
Paulsen MD, Ornstein RL. A 175-psec molecular dynamics simulation of camphor-bound cytochrome P-450cam. Proteins 1991; 11:184-204. [PMID: 1749772 DOI: 10.1002/prot.340110304] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The structure and internal motions of cytochrome P-450cam, a monooxygenase heme enzyme with 414 amino acid residues, with camphor bound at the active site have been evaluated on the basis of a 175-psec molecular dynamics simulation carried out at 300 K. All hydrogen atoms were explicitly modeled, and 204 crystallographic waters were included in the simulation. Based on an analysis of the time course of the trajectory versus potential energy, root mean square deviation, radius of gyration, and hydrogen bonding, the simulation was judged to be stable and representative of the average experimental structure. The averaged structural properties of the enzyme were evaluated from the final 135 psec of the simulation. The average atomic displacement from the X-ray structure was 1.39 A for all heavy atoms and 1.17 A for just C-alpha atoms. The average root-mean-square (rms) fluctuations of all heavy atoms and backbone atoms were 0.42 and 0.37 A, respectively. The computed rms fluctuations were in reasonable agreement with the experimentally determined temperature factors. All 13 segments of alpha-helix and 5 segments of beta-sheet were well preserved with the exception of the N-terminal half of helix F which alternated between an alpha-helix and a 310-helix. In addition there were in general only small variations in the relative orientation of adjacent alpha-helices. The rms fluctuations of the backbone dihedral angles in the secondary structure elements were almost uniformly smaller, with the fluctuation in alpha-helices and beta-sheets, 31 and 10% less, respectively, than those in nonsecondary structure regions. The reported crystal structure contains kinks in both helices C and I. In the simulation, both of these regions showed high mobility and large deviations from their starting positions. Since the kink in the I helix is at the oxygen binding site, these motions may have mechanistic implications.
Collapse
Affiliation(s)
- M D Paulsen
- Molecular Science Research Center, Pacific Northwest Laboratory, Richland, Washington 99352
| | | |
Collapse
|
14
|
Paulsen MD, Bass MB, Ornstein RL. Analysis of active site motions from a 175 picosecond molecular dynamics simulation of camphor-bound cytochrome P450cam. J Biomol Struct Dyn 1991; 9:187-203. [PMID: 1741957 DOI: 10.1080/07391102.1991.10507906] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The structure and internal motions of the active site residues of camphor-bound cytochrome P450cam have been evaluated on the basis of a 175 psec molecular dynamics simulation. The active site residues generally show very small deviations away from their starting crystal positions. These residues also generally show much smaller fluctuations than for the enzyme as a whole. Phe 87 is dynamically very unusual and is suggested to play a role in substrate movement into and/or out of the active site. The average distance between the heme iron and atoms C5, C6, and C3 of camphor is 5.3, 6.0, and 7.0 A, respectively. This trend is consistent with the experimentally observed stereospecificity of the hydroxylation reaction. On the basis of distance and angle criteria, both 5-exo and 5-endo hydrogen abstraction are predicted to occur during the hydroxylation reaction; although the 5-exo pathway is expected to be 3-fold more likely.
Collapse
Affiliation(s)
- M D Paulsen
- Molecular Science Research Center, Pacific Northwest Laboratory, Richland, Washington 99352
| | | | | |
Collapse
|
15
|
Cornell WD, Howard AE, Kollman P. Molecular mechanical potential functions and their application to study molecular systems. Curr Opin Struct Biol 1991. [DOI: 10.1016/0959-440x(91)90062-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|