1
|
Abstract
Among more than 120 genes that are now known to regulate mammalian pigmentation, one of the key genes is MC1R, which encodes the melanocortin 1 receptor, a seven transmembrane G protein-coupled receptor expressed on the surface of melanocytes. Since the monoexonic sequence of the gene was cloned and characterized more than a decade ago, tremendous efforts have been dedicated to the extensive genotyping of mostly red-haired populations all around the world, thus providing allelic variants that may or may not account for melanoma susceptibility in the presence or absence of ultraviolet (UV) exposure. Soluble factors, such as proopiomelanocortin (POMC) derivatives, agouti signal protein (ASP) and others, regulate MC1R expression, leading to improved photoprotection via increased eumelanin synthesis or in contrast, inducing the switch to pheomelanin. However, there is an obvious lack of knowledge regarding the numerous and complex regulatory mechanisms that govern the expression of MC1R at the intra-cellular level, from gene transcription in response to an external stimulus to the expression of the mature receptor on the melanocyte surface.
Collapse
Affiliation(s)
- Francois Rouzaud
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Building 37, Room 2132, Bethesda, MD 20892, USA
| | | |
Collapse
|
2
|
Odijk T. Statics and dynamics of condensed DNA within phages and globules. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2004; 362:1497-1517. [PMID: 15306463 DOI: 10.1098/rsta.2004.1385] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Several controversial issues concerning the packing of linear DNA in bacteriophages and globules are discussed. Exact relations for the osmotic pressure, capsid pressure and loading force are derived in terms of the hole size inside phages under the assumption that the DNA globule has a uniform density. A new electrostatic model is introduced for computing the osmotic pressure of rod-like polyelectrolytes at very high concentrations. At intermediate packing, a reptation model is considered for DNA diffusing within a toroidal globule. Under tight-packing conditions a model of Coulomb sliding friction is proposed. A general discussion is given of our current understanding of the statics and dynamics of confined DNA in the context of the following experiments: characterization of the liquid crystalline phases, X-ray scattering by phages, osmotic-stress measurements, cyclization within globules and single-molecule determination of the loading forces.
Collapse
Affiliation(s)
- Theo Odijk
- Complex Fluids Theory, Faculty of Applied Sciences, Delft University of Technology, PO Box 5057, 2600GB Delft, The Netherlands.
| |
Collapse
|
3
|
Arbuckle JL, Fauss LA, Simpson R, Ptaszek LM, Rodgers KK. Identification of two topologically independent domains in RAG1 and their role in macromolecular interactions relevant to V(D)J recombination. J Biol Chem 2001; 276:37093-101. [PMID: 11479318 DOI: 10.1074/jbc.m105988200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V(D)J recombination is instigated by the recombination-activating proteins RAG1 and RAG2, which catalyze site-specific DNA cleavage at the border of the recombination signal sequence (RSS). Although both proteins are required for activity, core RAG1 (the catalytically active region containing residues 384-1008 of 1040) alone displays binding specificity for the conserved heptamer and nonamer sequences of the RSS. The nonamer-binding region lies near the N terminus of core RAG1, whereas the heptamer-binding region has not been identified. Here, potential domains within core RAG1 were identified using limited proteolysis studies. An iterative procedure of DNA cloning, protein expression, and characterization revealed the presence of two topologically independent domains within core RAG1, referred to as the central domain (residues 528-760) and the C-terminal domain (residues 761-980). The domains do not include the nonamer-binding region but rather largely span the remaining relatively uncharacterized region of core RAG1. Characterization of macromolecular interactions revealed that the central domain bound to the RSS with specificity for the heptamer and contained the predominant binding site for RAG2. The C-terminal domain bound DNA cooperatively but did not show specificity for either conserved RSS element. This domain was also found to self-associate, implicating it as a dimerization domain within RAG1.
Collapse
Affiliation(s)
- J L Arbuckle
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | | | | | | | |
Collapse
|
4
|
Costa M, Solà M, del Solar G, Eritja R, Hernández-Arriaga AM, Espinosa M, Gomis-Rüth FX, Coll M. Plasmid transcriptional repressor CopG oligomerises to render helical superstructures unbound and in complexes with oligonucleotides. J Mol Biol 2001; 310:403-17. [PMID: 11428897 DOI: 10.1006/jmbi.2001.4760] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CopG is a 45 amino acid residue transcriptional repressor involved in the copy number control of the streptococcal plasmid pMV158. To do so, it binds to a DNA operator that contains a 13 bp pseudosymmetric DNA element. Binding of CopG to its operator results in repression, at the transcriptional level, of its own synthesis and that of the initiator of replication protein, RepB. Biochemical experiments have shown that CopG co-operatively associates to its target DNA at low protein:DNA ratios, completely protecting four helical turns on the same face of the double helix in both directions from the inverted repeat that constitutes the CopG primary target. This has been correlated with a CopG-mediated DNA bend of about 100 degrees. Here, we show that binding of CopG to DNA fragments containing the inverted repeat just at one end led to nucleation of the protein initiating from the inverted repeat. Nucleation extended to the entire fragment, with CopG-DNA contacts occurring on the same face of the DNA helix. The protein, the prototype for a family of homologous plasmid repressors, displays a homodimeric ribbon-helix-helix arrangement. It polymerises within the unbound crystal to render a continuous right-handed protein superhelix of homodimers, around which a bound double-stranded (ds) DNA could wrap. We have solved the crystal structure of CopG in complex with a 22 bp dsDNA oligonucleotide encompassing the cognate pseudosymmetric element. In the crystal, one protein tetramer binds at one face of the DNA with two parallel beta-ribbons inserted into the major groove. The DNA is bent about 50 degrees under compression of both major and minor grooves. A continuous right-handed complex helix made up mainly by protein-protein and some protein-DNA interactions is observed. The protein-protein interactions involve regions similar to those observed in the oligomerisation of the native crystals and those employed to set up the functional tetramer. A previously solved complex structure of the protein with a 19 bp dsDNA had unveiled a left-handed helical superstructure just made up by DNA interactions.
Collapse
Affiliation(s)
- M Costa
- Institut de Biologia Molecular de Barcelona, CID-CSIC, Jordi Girona, 18-26, Barcelona, 08034, Spain
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Tung CS, Wall ME, Gallagher SC, Trewhella J. A model of troponin-I in complex with troponin-C using hybrid experimental data: the inhibitory region is a beta-hairpin. Protein Sci 2000; 9:1312-26. [PMID: 10933496 PMCID: PMC2144674 DOI: 10.1110/ps.9.7.1312] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We present a model for the skeletal muscle troponin-C (TnC)/troponin-I (TnI) interaction, a critical molecular switch that is responsible for calcium-dependent regulation of the contractile mechanism. Despite concerted efforts by multiple groups for more than a decade, attempts to crystallize troponin-C in complex with troponin-I, or in the ternary troponin-complex, have not yet delivered a high-resolution structure. Many groups have pursued different experimental strategies, such as X-ray crystallography, NMR, small-angle scattering, chemical cross-linking, and fluorescent resonance energy transfer (FRET) to gain insights into the nature of the TnC/TnI interaction. We have integrated the results of these experiments to develop a model of the TnC/TnI interaction, using an atomic model of TnC as a scaffold. The TnI sequence was fit to each of two alternate neutron scattering envelopes: one that winds about TnC in a left-handed sense (Model L), and another that winds about TnC in a right-handed sense (Model R). Information from crystallography and NMR experiments was used to define segments of the models. Tests show that both models are consistent with available cross-linking and FRET data. The inhibitory region TnI(95-114) is modeled as a flexible beta-hairpin, and in both models it is localized to the same region on the central helix of TnC. The sequence of the inhibitory region is similar to that of a beta-hairpin region of the actin-binding protein profilin. This similarity supports our model and suggests the possibility of using an available profilin/actin crystal structure to model the TnI/actin interaction. We propose that the beta-hairpin is an important structural motif that communicates the Ca2+-activated troponin regulatory signal to actin.
Collapse
Affiliation(s)
- C S Tung
- Theoretical Division, Los Alamos National Laboratory, New Mexico 87545, USA
| | | | | | | |
Collapse
|
6
|
Edwards CA, Tung CS, Silks LA, Gatewood JM, Fee JA, Mariappan SV. Probing site-specific interactions in protein-DNA complexes using heteronuclear NMR spectroscopy and molecular modeling: binding of Cro repressor to OR3. J Biomol Struct Dyn 1998; 16:13-20. [PMID: 9745890 DOI: 10.1080/07391102.1998.10508222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this paper, a general method is developed to study site-specific interactions in DNA-protein complexes using heteronuclear NMR spectroscopy and molecular modeling. This method involves two steps: (a) homonuclear 1H NMR and molecular modeling are used to develop a low resolution model and (b) 15N7-guanosine containing oligonucleotides are employed to probe the specific intermolecular interactions predicted in (a). This method is applied to Cro-operator complex due to its small size and extensive prior characterization. Non-exchangeable and exchangeable base protons have been assigned by nuclear Overhauser effect spectroscopy (NOESY) and chemical shift correlation spectroscopy. Extensive line-broadening has been observed in the 1H NMR spectra of the operator DNA in the presence of protein. Differential line-broadening observed in the imino proton region and the comparison of NOESY spectra in the presence and absence of Cro protein show that guanosine-12 and guanosine-14 are involved in the Cro-DNA interaction, while the three A.T base-pairs at the 3'- and 5'-termini play only a minor role in the binding. A model of the Cro-operator DNA complex has been constructed by docking helix-3 of the Cro protein in the major groove and it predicted specific hydrogen bonds between N7 of guanosines-12 and -14 and the side-chain of Lys-32 and Ser-28, respectively. The appearance of a new resonance in the temperature dependent proton detected heteronuclear multiple quantum coherence (HMQC) spectra of the Cro-DNA complex also demonstrates a specific interaction of Cro with guanosine-14 of the operator DNA.
Collapse
Affiliation(s)
- C A Edwards
- Structural Biology, Los Alamos National Laboratory, NM 87545, USA
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
DNA is on the move across conformational space. Duplexes diversity and, joined by triplexes, quadruplexes, loops, bulges and multiarmed junctions, open the route to a bewildering array of increasingly complex conformations. In addition to this structural growth, DNA has come under increasing scrutiny thanks to the development of chemical and physical techniques for deforming its conformation and probing its properties. These investigations help us to learn more about the mechanics and the activity of this remarkably versatile macromolecule.
Collapse
Affiliation(s)
- A Lebrun
- Laboratoire de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
8
|
Abstract
The present computational power and sophistication of theoretical approaches to nucleic acid structural investigation are sufficient for the realization of static and dynamic models that correlate accurately with current crystallographic, NMR and solution-probing structural data, and consequently are able to provide valuable insights and predictions for a variety of nucleic acid conformational families. In molecular dynamics simulations, the year 1995 was marked by the foray of fast Ewald methods, an accomplishment resulting from several years' work in the search for an adequate treatment of the electrostatic long-range forces so primordial in nucleic acid behavior. In very large systems, and particularly in the RNA-folding field, techniques originating from artificial intelligence research, like constraint satisfaction programming or genetic algorithms, have established their utility and potential.
Collapse
Affiliation(s)
- S Louise-May
- Institut de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Modélisations et Simulations des Acides. Nucléiques, UPR 9002, Strasbourg, France
| | | | | |
Collapse
|