1
|
Krishnan R, Oh DH. Structural determinants of photoreactivity of triplex forming oligonucleotides conjugated to psoralens. J Nucleic Acids 2010; 2010:523498. [PMID: 20725628 PMCID: PMC2915845 DOI: 10.4061/2010/523498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 06/03/2010] [Indexed: 11/23/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) with both DNA and 2'-O-methyl RNA backbones can direct psoralen photoadducts to specific DNA sequences. However, the functional consequences of these differing structures on psoralen photoreactivity are unknown. We designed TFO sequences with DNA and 2'-O-methyl RNA backbones conjugated to psoralen by 2-carbon linkers and examined their ability to bind and target damage to model DNA duplexes corresponding to sequences within the human HPRT gene. While TFO binding affinity was not dramatically affected by the type of backbone, psoralen photoreactivity was completely abrogated by the 2'-O-methyl RNA backbone. Photoreactivity was restored when the psoralen was conjugated to the RNA TFO via a 6-carbon linker. In contrast to the B-form DNA of triplexes formed by DNA TFOs, the CD spectra of triplexes formed with 2'-O-methyl RNA TFOs exhibited features of A-form DNA. These results indicate that 2'-O-methyl RNA TFOs induce a partial B-to-A transition in their target DNA sequences which may impair the photoreactivity of a conjugated psoralen and suggest that optimal design of TFOs to target DNA damage may require a balance between binding ability and drug reactivity.
Collapse
Affiliation(s)
- Rajagopal Krishnan
- Department of Dermatology, University of California at San Francisco, San Francisco, CA 94121, USA
- Dermatology Research Unit, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | - Dennis H. Oh
- Department of Dermatology, University of California at San Francisco, San Francisco, CA 94121, USA
- Dermatology Research Unit, San Francisco VA Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| |
Collapse
|
2
|
Bates PJ, Reddoch JF, Hansakul P, Arrow A, Dale R, Miller DM. Biosensor detection of triplex formation by modified oligonucleotides. Anal Biochem 2002; 307:235-43. [PMID: 12202239 DOI: 10.1016/s0003-2697(02)00063-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to the instability of DNA oligonucleotides in biological solutions, antisense or antigene therapies aimed at modulation of specific gene expression will most likely require the use of oligonucleotides with modified backbones. Here, we examine the use of a surface plasmon resonance biosensor (BIAcore) to compare triplex-directed binding of modified oligonucleotides targeted to a region of the murine c-myc promoter. We describe optimization of experimental conditions to minimize nonspecific interactions between the oligonucleotides and the sensor chip surface, and the limitations imposed by certain backbones and sequence types. The abilities of pyrimidine oligonucleotides with various modified backbones to form specific triple helices with an immobilized hairpin duplex were readily determined using the biosensor. Modification of the third-strand oligonucleotide with RNA or 2(')-O-methyl RNA was found to enhance triplex formation, whereas phosphorothioate or phosphotriester substitutions abrogated it. A comparison of these results to DNase I footprinting experiments using the same oligonucleotides showed complete agreement between the two sets of data.
Collapse
Affiliation(s)
- Paula J Bates
- Department of Medicine and James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | | | | | | | | | | |
Collapse
|
3
|
Cogoi S, Suraci C, Del Terra E, Diviacco S, van der Marel G, van Boom J, Quadrifoglio F, Xodo L. Downregulation of c-Ki-ras promoter activity by triplex-forming oligonucleotides endogenously generated in human 293 cells. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2000; 10:283-95. [PMID: 10984122 DOI: 10.1089/108729000421466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exogenous triplex-forming oligodeoxynucleotides (TFO) have the capacity to modulate in vivo the expression of individual genes. As the administration of TFO to cells is not without problems, we analyzed the possibility of generating them directly in the cell, using specific expression vectors. We constructed three vectors, mU6-GA, mU6-CA, and mU6-CT, that direct the synthesis in human 293 cells of 76-mer CU, GU, and AG motif TFO (rTFO) potentially capable of binding to a critical poly (R x Y) sequence contained in the promoter of the Ki-ras proto-oncogene. The ability of the CU, GU, and AG motif rTFO to interact with the double helix of the c-Ki-ras target was investigated in vitro by footprinting and band-shift experiments, using both synthetic and endogenously synthesized oligoribonucleotides. The human 293 cells were transfected with DNA mixtures containing a plasmid, which bears the reporter chloramphenicol acetyltransferase (CAT) gene downstream from the c-Ki-ras promoter (pKRS-413), as well as an rTFO-generating vector (mU6-GA, mU6-CA, or mU6-CT). As control, the cells were transfected with DNA mixtures containing vector mU6-C1 or mU6-C2. These generated transcripts unable to form triple helices with the poly (R x Y) sequence of the c-Ki-ras promoter. Intracellular synthesis of the 76-mer CU, GU, and AG rTFO by mU6-GA, mU6-CA, and mU6-CT was checked by Northern blot hybridization. Through beta-gal and CAT ELISA immunoassays, we found that the 293 cells transfected with either mU6-GA, mU6-CA, or mU6-CT showed a significant inhibition of CAT expression compared with cells transfected with control plasmids mU6-C1 or mU6-C2. The results of five separate transient transfection experiments showed that endogenous GU and AG rTFO, generated by mU6-CA and mU6-CT, produce, respectively, 40% (+/- 4% SE) and 47% (+/- 8% SE) CAT inhibition, whereas CU rTFO, generated by mU6-GA, produces 38% (+/- 7% SE) CAT inhibition. In conclusion, this study suggests that it is possible to downregulate the expression of an individual gene through the use of recombinant vectors encoding the information for the intracellular synthesis of short triplex-forming RNA strands.
Collapse
Affiliation(s)
- S Cogoi
- Department of Biomedical Sciences and Technologies, School of Medicine, Udine, Italy
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Cassidy RA, Kondo NS, Miller PS. Triplex formation by psoralen-conjugated chimeric oligonucleoside methylphosphonates. Biochemistry 2000; 39:8683-91. [PMID: 10913277 DOI: 10.1021/bi000657x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interactions between nuclease-resistant, 5'-psoralen-conjugated, chimeric methylphosphonate oligodeoxyribo- or oligo-2'-O-methylribo-triplex-forming oligomers (TFOs) and a purine tract found in the envelope gene of HIV proviral DNA (env-DNA) were investigated by gel mobility shift assays or by photo-cross-linking experiments. These chimeric TFOs contain mixtures of methylphosphonate and phosphodiester internucleotide bonds. A pyrimidine chimeric TFO composed of thymidine and 5-methyl-2'-deoxycytidine (C), d-PS-TpCpTpCpTpCpTpTpTpTpTpTpCpTpC (1mp) where PS is trimethylpsoralen and p is methylphosphonate, forms a stable triplex with env-DNA whose dissociation constant is 1. 3 microM at 22 degrees C and pH 7.0. The dissociation constant of chimeric TFO 2mp, d-PS-UpCpTpCpTpCpTpUpTpUpTpUpCpTpC, decreased to 400 nM when four of the thymidines in 1mp were replaced by 5-propynyl-2'-deoxyuridines (U), a result consistent with the increased stacking interactions and hydrophobic nature of 5-propynyl-U. An even greater decrease, 470 -50 nM, was observed for the all-phosphodiester versions of 1mp and 2mp. The differences in behavior of the chimeric versus the all-phosphodiester oligomers may be related to differences in the conformations between the propynyl-U-substituted versus the nonsubstituted TFOs. Thus, in the chimeric oligomer, the stabilizing effect of the propynyl-U's may be offset by the reduced ability of the methylphosphonate backbone to assume an A-type conformation, a conformation that appears to be preferred by propynyl-U-containing TFOs. A chimeric oligo-2'-O-methylribopyrimidine with the same sequence as 1mp also formed a stable triplex, K(d) = 1.4 microM, with env-DNA. In contrast to the behavior of the pyrimidine TFOs, antiparallel A/G oligomers and parallel or antiparallel T/G oligomers did not form triplexes with env-DNA, even at oligomer concentrations of 10 microM. This lack of binding may be a consequence of the low G content (33%) of the triplex binding site. Irradiation of triplexes formed between the pyrimidine TFOs and env-DNA resulted in formation of photoadducts with either the upper-strand C or the lower-strand T at the 5'-CpA-3' duplex/triplex junction. No interstrand cross-links were observed. The presence of a 5-propynyl-U at the 5'-end of the oligomer caused a reduction in the amount of upper-strand photoadduct but had no effect on photoadduct formation with the lower strand, suggesting that increased stacking interactions caused by the presence of the 5-propynyl-U change the orientation of psoralen with respect to the upper-strand C. The ability of chimeric methylphosphonate TFOs to bind to DNA, combined with their resistance to degradation by serum 3'-exonucleases, suggests that they may have utility in biological experiments.
Collapse
Affiliation(s)
- R A Cassidy
- Department of Biochemistry and Molecular Biology, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
5
|
Agrawal S, Kandimalla ER. Antisense therapeutics: is it as simple as complementary base recognition? MOLECULAR MEDICINE TODAY 2000; 6:72-81. [PMID: 10652480 DOI: 10.1016/s1357-4310(99)01638-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antisense oligonucleotides provide a simple and efficient approach for developing target-selective drugs because they can modulate gene expression sequence-specifically. Antisense oligonucleotides have also become efficient molecular biological tools to investigate the function of any protein in the cell. As the application of antisense oligonucleotides has expanded, multiple mechanisms of oligonucleotides have been characterized that impede their routine use. Here, we discuss different mechanisms of action of oligonucleotides and the possible ways of minimizing non-antisense-related [corrected] effects to improve their specificity.
Collapse
Affiliation(s)
- S Agrawal
- Hybridon, 155 Fortune Boulevard, Milford, MA 01757, USA.
| | | |
Collapse
|
6
|
Praseuth D, Guieysse AL, Hélène C. Triple helix formation and the antigene strategy for sequence-specific control of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1489:181-206. [PMID: 10807007 DOI: 10.1016/s0167-4781(99)00149-9] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Specific gene expression involves the binding of natural ligands to the DNA base pairs. Among the compounds rationally designed for artificial regulation of gene expression, oligonucleotides can bind with a high specificity of recognition to the major groove of double helical DNA by forming Hoogsteen type bonds with purine bases of the Watson-Crick base pairs, resulting in triple helix formation. Although the potential target sequences were originally restricted to polypurine-polypyrimidine sequences, considerable efforts were devoted to the extension of the repertoire by rational conception of appropriate derivatives. Efficient tools based on triple helices were developed for various biochemical applications such as the development of highly specific artificial nucleases. The antigene strategy remains one of the most fascinating fields of triplex application to selectively control gene expression. Targeting of genomic sequences is now proved to be a valuable concept on a still limited number of studies; local mutagenesis is in this respect an interesting application of triplex-forming oligonucleotides on cell cultures. Oligonucleotide penetration and compartmentalization in cells, stability to intracellular nucleases, accessibility of the target sequences in the chromatin context, the residence time on the specific target are all limiting steps that require further optimization. The existence and the role of three-stranded DNA in vivo, its interaction with intracellular proteins is worth investigating, especially relative to the regulation of gene transcription, recombination and repair processes.
Collapse
Affiliation(s)
- D Praseuth
- Laboratoire de Biophysique, INSERM U201, CNRS UMR 8646, Muséum National d'Histoire Naturelle, Paris, France
| | | | | |
Collapse
|
7
|
Keppler M, Zegrocka O, Strekowski L, Fox KR. DNA triple helix stabilisation by a naphthylquinoline dimer. FEBS Lett 1999; 447:223-6. [PMID: 10214950 DOI: 10.1016/s0014-5793(99)00284-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have used DNase I footprinting to examine the effect of a novel naphthylquinoline dimer, designed as a triplex-specific bis-intercalator, on the stability of intermolecular DNA triplexes. We find that this compound efficiently promotes triplex formation between the 9-mer oligonucleotide 5'-TTTTTTCTT and its oligopurine duplex target at concentrations as low as 0.1 microM, enhancing the triplex stability by at least 1000-fold. This compound, which is the first reported example of a triplex bis-intercalator, is about 30 times more potent than the simple monofunctional ligand.
Collapse
Affiliation(s)
- M Keppler
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, UK
| | | | | | | |
Collapse
|
8
|
Shen LX, Kandimalla ER, Agrawal S. Impact of mixed-backbone oligonucleotides on target binding affinity and target cleaving specificity and selectivity by Escherichia coli RNase H. Bioorg Med Chem 1998; 6:1695-705. [PMID: 9839001 DOI: 10.1016/s0968-0896(98)00131-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
All phosphorothioate mixed-backbone oligonucleotides (MBOs) composed of deoxyribonucleotide and 2'-O-methylribonucleotide segments were studied for their target binding affinity, specificity, and RNase H activation properties. The 2'-O-methylribonucleotide segment, which does not activate RNase H, serves as a high affinity target-binding domain and the deoxyribonucleotide (DNA) segment, which binds to the target with a lower affinity than the former domain, serves as an RNase H-activation or target-cleaving domain. In order to understand the influence of the size and position of the DNA segment of MBOs on RNase H-mediated cleavage of the RNA target, we designed and synthesized a series of 18-mer MBOs with the DNA segment varying from a stretch of two to eight deoxyribonucleotides in the middle, at the 5'-end, or at the 3'-end, of the MBOs. UV absorbance melting experiments of the duplexes of the MBOs with the complementary and singly mismatched RNA targets suggest that the target binding affinity of the MBOs increases as the number of 2'-O-methylribonucleotides increases, and that the binding specificity is influenced by the size and position of the DNA segment. Analysis of RNase H assay results indicates that the minimum substrate cleavage site and cleavage efficiency of RNase H are influenced by the position of the DNA segment in the MBO sequence. RNA cleavage efficiency decreases as the position of the DNA segment of the MBO.RNA heteroduplex is changed from the 3'-end to the middle and to the 5'-end of the target strand. Studies with singly mismatched targets indicate that the RNase H-dependent point mutation selectivity of the MBOs is affected by both the position and size of the DNA segment in the MBO sequence.
Collapse
Affiliation(s)
- L X Shen
- Hybridon, Inc., Cambridge, MA 02139, USA
| | | | | |
Collapse
|
9
|
Godde F, Toulmé JJ, Moreau S. Benzoquinazoline derivatives as substitutes for thymine in nucleic acid complexes. Use of fluorescence emission of benzo[g]quinazoline-2,4-(1H,3H)-dione in probing duplex and triplex formation. Biochemistry 1998; 37:13765-75. [PMID: 9753465 DOI: 10.1021/bi9811967] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Triple helix formation obeys structural features that do not allow accommodation of every double-stranded sequence; it requires the occurrence of homopurine stretches. A further constraint comes from the weak energy of interaction between the third strand and the double-stranded target. In an attempt to design bases leading to increased stability of triplexes, we explored the ability of modified bases with an extended aromatic domain to increase third strand binding through stacking interactions. We report here the use of benzo[g]- and benzo[f]quinazoline-2,4-dione-(1H,3H)-dione as substitutes for thymine in the canonical TAT triplet. The synthesis and characterization of the beta nucleoside derivatives of benzoquinazolines are described. Triplex-forming oligonucleotides containing these modified bases have been prepared, and their ability to form triplexes has been evaluated by UV absorption-monitored thermal denaturation measurements. Benzo[g]quinazoline and benzo[f]quinazoline formed triple-stranded structures with slightly decreased stabilities. In addition, benzo[g]quinazoline revealed strong fluorescence emission properties which can be used to monitor selectively the formation of triple-helical structures. Annealing of benzo[g]quinazoline to complementary strands did not produce any fluorescence modification. But when it was introduced into the Hoogsteen strand of PyPuPy complexes, the fluorescence intensity was reduced and the emission maximum was shifted to short wavelengths.
Collapse
Affiliation(s)
- F Godde
- INSERM U-386, IFR Pathologies Infectieuses, Université Victor Segalen, Bordeaux, France
| | | | | |
Collapse
|
10
|
Kool ET. Recognition of DNA, RNA, and Proteins by Circular Oligonucleotides. Acc Chem Res 1998; 31:502-510. [PMID: 19946615 DOI: 10.1021/ar9602462] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eric T. Kool
- Department of Chemistry, University of Rochester, Rochester, New York 14627
| |
Collapse
|