1
|
Kotb OM, Brozhik DS, Verbenko VN, Gulevich EP, Ezhov VF, Karlin DL, Pak FA, Paston SV, Polyanichko AM, Khalikov AI, Chikhirzhina EV. Investigation of DNA Damage Induced by Proton and Gamma Radiation. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921020123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
2
|
Tankovskaia SA, Kotb OM, Dommes OA, Paston SV. Application of spectral methods for studying DNA damage induced by gamma-radiation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 200:85-92. [PMID: 29674243 DOI: 10.1016/j.saa.2018.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Spectral methods can provide a variety of possibilities to determine several types of radiation-induced DNA damage, such as nucleobase destruction and local denaturation. DNA UV absorption and CD spectra measured at room temperature undergo noticeable alteration under the action of γ-radiation. We have applied the Spirin method of total nucleobases determination, and have measured the molar extinction coefficient of DNA and DNA CD spectra for solutions with different NaCl concentrations (3mM-3.2M) and containing MgCl2, exposed to γ-radiation with the doses of 0-103Gy. The melting temperatures of DNA in irradiated solutions at the doses of 0-50Gy were obtained with the help of spectrophotometric melting. It was found that the amount of destructed nucleobases and radiation-induced loss of DNA helicity significantly decreases with the rise of the ionic strength of the irradiated solution. Substitution of a portion of Na+ ions on Mg2+ while keeping the total ionic strength constant (μ=5mM) does not affect the considered radiation effects. The role of the structure and composition of the DNA secondary hydration layer in the radiation-induced damages is discussed.
Collapse
Affiliation(s)
- Svetlana A Tankovskaia
- Department of Molecular Biophysics and Polymer Physics, Faculty of Physics, Saint-Petersburg State University, Ulyanovskaya, 3, St. Petersburg 198504, Russia
| | - Omar M Kotb
- Department of Molecular Biophysics and Polymer Physics, Faculty of Physics, Saint-Petersburg State University, Ulyanovskaya, 3, St. Petersburg 198504, Russia; Department of Physics, Faculty of Science, Zagazig University, Sharkia Gov, Zagazig 44519, Egypt
| | - Olga A Dommes
- Institute of Macromolecular Compounds, Bolshoy pr. 31, 199004 Saint-Petersburg, Russia
| | - Sofia V Paston
- Department of Molecular Biophysics and Polymer Physics, Faculty of Physics, Saint-Petersburg State University, Ulyanovskaya, 3, St. Petersburg 198504, Russia.
| |
Collapse
|
3
|
Lando DY, Chang CL, Fridman AS, Grigoryan IE, Galyuk EN, Hsueh YW, Hu CK. Comparative thermal and thermodynamic study of DNA chemically modified with antitumor drug cisplatin and its inactive analog transplatin. J Inorg Biochem 2014; 137:85-93. [PMID: 24831492 DOI: 10.1016/j.jinorgbio.2014.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 12/11/2022]
Abstract
Antitumor activity of cisplatin is exerted by covalent binding to DNA. For comparison, studies of cisplatin-DNA complexes often employ the very similar but inactive transplatin. In this work, thermal and thermodynamic properties of DNA complexes with these compounds were studied using differential scanning calorimetry (DSC) and computer modeling. DSC demonstrates that cisplatin decreases thermal stability (melting temperature, Tm) of long DNA, and transplatin increases it. At the same time, both compounds decrease the enthalpy and entropy of the helix-coil transition, and the impact of transplatin is much higher. From Pt/nucleotide molar ratio rb=0.001, both compounds destroy the fine structure of DSC profile and increase the temperature melting range (ΔT). For cisplatin and transplatin, the dependences δTm vs rb differ in sign, while δΔT vs rb are positive for both compounds. The change in the parameter δΔT vs rb demonstrates the GC specificity in the location of DNA distortions. Our experimental results and calculations show that 1) in contrast to [Pt(dien)Cl]Cl, monofunctional adducts formed by transplatin decrease the thermal stability of long DNA at [Na(+)]>30mM; 2) interstrand crosslinks of cisplatin and transplatin only slightly increase Tm; 3) the difference in thermal stability of DNA complexes with cisplatin vs DNA complexes with transplatin mainly arises from the different thermodynamic properties of their intrastrand crosslinks. This type of crosslink appears to be responsible for the antitumor activity of cisplatin. At any [Na(+)] from interval 10-210mM, cisplatin and transplatin intrastrand crosslinks give rise to destabilization and stabilization, respectively.
Collapse
Affiliation(s)
- Dmitri Y Lando
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus.
| | - Chun-Ling Chang
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Alexander S Fridman
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus
| | | | - Elena N Galyuk
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus
| | - Ya-Wei Hsueh
- Department of Physics, National Central University, Chungli 32001, Taiwan
| | - Chin-Kun Hu
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan.
| |
Collapse
|
4
|
Lando DY, Galyuk EN, Chang CL, Hu CK. Temporal behavior of DNA thermal stability in the presence of platinum compounds. Role of monofunctional and bifunctional adducts. J Inorg Biochem 2012; 117:164-70. [DOI: 10.1016/j.jinorgbio.2012.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/24/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
|
5
|
Chang CL, Lando DY, Fridman AS, Hu CK. Thermal stability of DNA with interstrand crosslinks. Biopolymers 2012; 97:807-17. [DOI: 10.1002/bip.22077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Fridman AS, Galyuk EN, Vorob'ev VI, Skvortsov AN, Lando DY. Melting of Crosslinked DNA: VI. Comparison of Influence of Interstrand Crosslinks and Other Chemical Modifications Formed by Antitumor Compounds on DNA Stability. J Biomol Struct Dyn 2008; 26:175-85. [DOI: 10.1080/07391102.2008.10507233] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Galyuk EN, Fridman AS, Vorobev VI, Haroutiunian SG, Sargsyan SA, Hauruk MM, Lando DY. Compensation of DNA Stabilization and Destabilization Effects Caused by Cisplatin is Partially Disturbed in Alkaline Medium. J Biomol Struct Dyn 2008; 25:407-17. [DOI: 10.1080/07391102.2008.10507189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Hackl EV, Blagoi YP. The effect of temperature on DNA structural transitions under the action of Cu2+ and Ca2+ ions in aqueous solutions. Biopolymers 2005; 77:315-24. [PMID: 15637702 DOI: 10.1002/bip.20225] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The work examines the structural transitions of DNA under the action of Cu2+ and Ca2+ ions in aqueous solution at temperatures of 29 and 45 degrees C by ir spectroscopy. Upon binding to the divalent ions studied, DNA transits into the compact state both at 29 and 45 degrees C. In the compact state DNA remains in B-form limits. The compaction process is of high positive cooperativity. As temperature increases the divalent metal ion concentration required to induce DNA compaction decreases in the case of Cu(2+)-induced compaction and increases in the case of Ca(2+)-induced compaction. It is suggested that the mechanism of the temperature effect on DNA compaction in the presence of Cu2+ ions possessing higher affinity for DNA bases differs from that of the temperature influence on Ca(2+)-induced DNA compaction. In the case of copper ions the determining factor is the increase of binding constants of the Cu2+ ions interacting with the denatured parts formed on DNA while in the case of calcium ions it is the decreased screening action of counterions upon the increase of their hydration with temperature. The efficiency of divalent metal ions studied in inducing DNA compaction depends on hydration of counterions. DNA compaction occurs in a narrow interval of Cu2+ concentrations. As the Cu2+ ion concentration increases, DNA compaction is replaced with Cu(2+)-induced DNA aggregation. At elevated temperatures Cu(2+)-induced DNA compaction could acquire a phase transition character.
Collapse
Affiliation(s)
- Elene V Hackl
- B. I. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin Ave., 61164 Kharkov, Ukraine.
| | | |
Collapse
|
9
|
Lando DY, Fridman AS, Wartell R. Thermodynamics of DNA containing very stable chemically modified base pairs. J Biomol Struct Dyn 2003; 20:519-31. [PMID: 12529151 DOI: 10.1080/07391102.2003.10506869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
DNA chemical modifications caused by the binding of some antitumor drugs give rise to a very strong local stabilization of the double helix. These sites melt at a temperature that is well above the melting temperatures of ordinary AT and GC base pairs. In this work we have examined the melting behavior of DNA containing very stable sites. Analytical expressions were derived and used to evaluate the thermodynamic properties of homopolymer DNA with several different distributions of stable sites. The results were extended to DNA with a heterogeneous sequence of AT and GC base pairs. The results were compared to the melting properties of DNA with ordinary covalent interstrand cross-links. It was found that, as with an ordinary interstrand cross-link, a single strongly stabilized site makes a DNA's melting temperature (T(m)) independent of strand concentration. However in contrast to a DNA with an interstrand cross-link, a strongly stabilized site makes the DNA's T(m) independent of DNA length and equal to T(infinity), the melting temperature of an infinite length DNA with the same GC-content and without a stabilized site. Moreover, at a temperature where more than 80% of base pairs are melted, the number of ordinary (non-modified) helical base pairs (n) is independent of both the DNA length and the location of the stabilized sites. For this condition, n(T) = (2 omega-a)S/(1-S) and S = exp[DeltaS(T(infinity)-T)/(RT)] where omega is the number of strongly stabilized sites in the DNA chain, a is the number of DNA ends that contain a stabilized site, and DeltaS, T, and R are the base pair entropy change, the temperature, and the universal gas constant per mole. The above expression is valid for a temperature interval that corresponds to n<0.2N for omega=1, and n<0.1N for omega>1, where N is the number of ordinary base pairs in the DNA chain.
Collapse
Affiliation(s)
- Dmitri Y Lando
- Institute of Bioorganic Chemistry, Belarus National Academy of Sciences, Kuprevich St. 5/2, 220141 Minsk, Belarus.
| | | | | |
Collapse
|
10
|
Fridman AS, Brabec V, Haroutiunian SG, Wartell RM, Lando DY. Melting of cross-linked DNA v. cross-linking effect caused by local stabilization of the double helix. J Biomol Struct Dyn 2003; 20:533-45. [PMID: 12529152 DOI: 10.1080/07391102.2003.10506870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
DNA interstrand cross-links are usually formed due to bidentate covalent or coordination binding of a cross-linking agent to nucleotides of different strands. However interstrand linkages can be also caused by any type of chemical modification that gives rise to a strong local stabilization of the double helix. These stabilized sites conserve their helical structure and prevent local and total strand separation at temperatures above the melting of ordinary AT and GC base pairs. This local stabilization makes DNA melting fully reversible and independent of strand concentration like ordinary covalent interstrand cross-links. The stabilization can be caused by all the types of chemical modifications (interstrand cross-links, intrastrand cross-links or monofunctional adducts) if they give rise to a strong enough local stabilization of the double helix. Our calculation demonstrates that an increase in stability by 25 to 30 kcal in the free energy of a single base pair of the double helix is sufficient for this "cross-linking effect" (i.e. conserving the helicity of this base pair and preventing strand separation after melting of ordinary base pairs). For the situation where there is more then one stabilized site in a DNA duplex (e.g., 1 stabilized site per 1000 bp), a lower stabilization per site is sufficient for the "cross-linking effect" (18 - 20 kcal). A substantial increase in DNA stability was found in various experimental studies for some metal-based anti-tumor compounds. These compounds may give rise to the effect described above. If ligand induced stabilization is distributed among several neighboring base pairs, a much lower minimum increase per stabilized base pair is sufficient to produce the cross-linking effect (1 bp- 24.4 kcal; 5 bp- 5.3 kcal; 10 bp- 2.9 kcal, 25 bp- 1.4 kcal; 50 bp- 1.0 kcal). The relatively weak non-covalent binding of histones or protamines that cover long regions of DNA (20- 40 bp) can also cause this effect if the salt concentration of the solution is sufficiently low to cause strong local stabilization of the double helix. Stretches of GC pairs more than 25 bp in length inserted into poly(AT) DNA also exhibit properties of stabilizing interstrand cross-links.
Collapse
Affiliation(s)
- Alexander S Fridman
- Institute of Bioorganic Chemistry, Belarus National Academy of Sciences, Kuprevich St. 5/2, 220141 Minsk, Belarus
| | | | | | | | | |
Collapse
|
11
|
Abstract
Short melted regions less than 100 base pairs (bp) in length are rarely found in the differential melting curves (DMC) of natural DNAs. Therefore, it is supposed that their characteristics do not affect DNA melting behavior. However, in our previous study, a strong influence of the form of the entropy factor of small loops on melting of cross-linked DNAs was established (D. Y. Lando, A. S. Fridman et al., Journal of Biomolecular Structure and Dynamics, 1997, Vol. 15, pp. 141-150; Journal of Biomolecular Structure and Dynamics, 1998, Vol. 16, pp. 59-67). Quite different dependencies of the melting temperature on the relative concentration of interstrand cross-links were obtained for the loop entropy factors given by the Fixman-Freire (Jacobson-Stockmayer) and Wartell-Benight relations. In the present study, the influence of the entropy factor of small loops on the melting of natural DNAs, cross-linked DNAs and periodical double-stranded polynucleotides is compared using computer simulation. A fast combined computational method for calculating DNA melting curves was developed for this investigation. It allows us to assign an arbitrary dependence of the loop entropy factor on the length of melted regions for the terms corresponding to small loops (less than tau bp in length). These terms are calculated using Poland's approach. The Fixman-Freire approach is used for long loops. Our calculations have shown that the temperature dependence of the average length of interior melted regions (loops) has a maximum at T approximately T(m) (T(m) is the DNA melting temperature) in contrast to the dependence of the total average length of melted regions, which increases almost monotonously. Computer modeling demonstrates that prohibition of formation of loops less than tau base pairs in length does not markedly change the DMC for tau < 150 bp. However, the same prohibition strongly affects the average length of internal melted regions for much smaller tau's. The effect is already noticeable for tau = 1 bp and increases with tau. A tenfold increase in the entropy factor of all loops with length less than tau bp causes a noticeable alteration of the DMC for tau > or = 30 bp. It is shown that DMCs are identical for the Wartell-Benight and for the Fixman-Freire (Jacobson-Stockmayer) form of the loop entropy factor. However, for low degree of denaturation, the average length of internal melted regions is 40% lower for the Wartell-Benight form due to the fluctuational opening of short AT-rich regions less than 10 bp in length. The same calculations carried out for periodical polynucleotides demonstrate a much stronger difference in melting behavior for different forms of entropy factors of short loops. The strongest difference occurs if the length of stable GC-rich and unstable AT-rich stretches is equal to 30 bp. However, the comparison carried out in this work demonstrates that the entropy factor of short loops influences melting behavior of cross-linked DNA much stronger than of unmodified DNA with random or periodical sequences.
Collapse
Affiliation(s)
- D Y Lando
- Institute of Bioorganic Chemistry, Belarus National Academy of Sciences, Kuprevich str. 5/2, 220141 Minsk, Belarus.
| | | |
Collapse
|
12
|
Lando DY, Fridman AS, Haroutiunian SG, Benight AS, Collery P. Melting of cross-linked DNA IV. Methods for computer modeling of total influence on DNA melting of monofunctional adducts, intrastrand and interstrand cross-links formed by molecules of an antitumor drug. J Biomol Struct Dyn 2000; 17:697-711. [PMID: 10698107 DOI: 10.1080/07391102.2000.10506560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A theoretical method is developed for calculation of melting curves of covalent complexes of DNA with antitumor drugs. The method takes into account all the types of chemical modifications of the double helix caused by platinum compounds and DNA alkylating agents: 1) monofunctional adducts bound to one nucleotide; 2) intrastrand cross-links which appear due to bidentate binding of a drug molecule to two nucleotides that are included into the same DNA strand; 3) interstrand cross-links caused by bidentate binding of a molecule to two nucleotides of different strands. The developed calculation method takes into account the following double helix alterations at sites of chemical modifications: 1) a change in stability of chemically modified base pairs and neighboring ones, that is caused by all the types of chemical modifications; 2) a change in the energy of boundaries between helical and melted regions at sites of chemical modification (local alteration of the factor of cooperativity of DNA melting), that is caused by all the types of chemical modifications, too; 3) a change in the loop entropy factor of melted regions that include interstrand cross-links; 4) the prohibition of divergence of DNA strands in completely melted DNA molecules, which is caused by interstrand cross-links only. General equations are derived, and three calculation methods are proposed to calculate DNA melting curves and the parameters that characterize the helix-coil transition.
Collapse
Affiliation(s)
- D Y Lando
- Institute of Bioorganic Chemistry, Belarus National Academy of Sciences, Minsk.
| | | | | | | | | |
Collapse
|
13
|
Lando DY, Fridman AS, Krot VI, Akhrem AA. Melting of cross-linked DNA. III. Calculation of differential melting curves. J Biomol Struct Dyn 1998; 16:59-67. [PMID: 9745895 DOI: 10.1080/07391102.1998.10508227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In our previous papers I and II (D. Y. Lando et al, J. Biomol. Struct. Dynam. (1997) v. 15, N1, p. 129-140, p. 141-150), two methods were developed for calculation of melting curves of cross-linked DNA. One of them is based on Poland's and another on the Fixman-Freire approach. In the present communication, III, a new theoretical method is developed for computation of differential melting curves of DNAs cross-linked by anticancer drugs and their inactive analogs. As Poland's approach, the method allows study of the influence of the loop entropy factor, delta(n), on melting behavior (n is the length of a loop in base pairs). However the method is much faster and requires computer time that inherent for the most rapid Fixman-Freire calculation approach. In contrast to the computation procedures described before in communications I and II, the method is suitable for computation of differential melting curves in the case of long DNA chains, arbitrary loop entropy factors of melted regions and arbitrary degree of cross-linking including very low values that occur in vivo after administration of antitumor drugs. The method is also appropriate for DNAs without cross-links. The results of calculation demonstrate that even very low degree of cross-linking alters the DNA differential melting curve. Cross-linking also markedly strengthens the influence of particular function delta(n) upon melting behavior.
Collapse
Affiliation(s)
- D Y Lando
- Institute of Bioorganic Chemistry, Belarus National Academy of Sciences, Minsk.
| | | | | | | |
Collapse
|
14
|
Haroutiunian S, Dalian E, Morozov V, Mamasachlissov E, Shahinian M, Akhrem A, Lando D, Messori L, Orioli P. Influence of cis- and trans-diamminedichloroplatinum(II) binding on the helix-coil transition of DNAs with different GC content. Inorganica Chim Acta 1998. [DOI: 10.1016/s0020-1693(98)00127-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|