1
|
Gren BA, Antczak M, Zok T, Sulkowska JI, Szachniuk M. Knotted artifacts in predicted 3D RNA structures. PLoS Comput Biol 2024; 20:e1011959. [PMID: 38900780 PMCID: PMC11218946 DOI: 10.1371/journal.pcbi.1011959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 06/01/2024] [Indexed: 06/22/2024] Open
Abstract
Unlike proteins, RNAs deposited in the Protein Data Bank do not contain topological knots. Recently, admittedly, the first trefoil knot and some lasso-type conformations have been found in experimental RNA structures, but these are still exceptional cases. Meanwhile, algorithms predicting 3D RNA models have happened to form knotted structures not so rarely. Interestingly, machine learning-based predictors seem to be more prone to generate knotted RNA folds than traditional methods. A similar situation is observed for the entanglements of structural elements. In this paper, we analyze all models submitted to the CASP15 competition in the 3D RNA structure prediction category. We show what types of topological knots and structure element entanglements appear in the submitted models and highlight what methods are behind the generation of such conformations. We also study the structural aspect of susceptibility to entanglement. We suggest that predictors take care of an evaluation of RNA models to avoid publishing structures with artifacts, such as unusual entanglements, that result from hallucinations of predictive algorithms.
Collapse
Affiliation(s)
- Bartosz A. Gren
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Maciej Antczak
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | | | - Marta Szachniuk
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
2
|
Niemyska W, Mukherjee S, Gren BA, Niewieczerzal S, Bujnicki JM, Sulkowska JI. Discovery of a trefoil knot in the RydC RNA: Challenging previous notions of RNA topology. J Mol Biol 2024; 436:168455. [PMID: 38272438 DOI: 10.1016/j.jmb.2024.168455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Knots are very common in polymers, including DNA and protein molecules. Yet, no genuine knot has been identified in natural RNA molecules to date. Upon re-examining experimentally determined RNA 3D structures, we discovered a trefoil knot 31, the most basic non-trivial knot, in the RydC RNA. This knotted RNA is a member of a small family of short bacterial RNAs, whose secondary structure is characterized by an H-type pseudoknot. Molecular dynamics simulations suggest a folding pathway of the RydC RNA that starts with a native twisted loop. Based on sequence analyses and computational RNA 3D structure predictions, we postulate that this trefoil knot is a conserved feature of all RydC-related RNAs. The first discovery of a knot in a natural RNA molecule introduces a novel perspective on RNA 3D structure formation and on fundamental research on the relationship between function and spatial structure of biopolymers.
Collapse
Affiliation(s)
- Wanda Niemyska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland.
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland
| | - Bartosz A Gren
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Szymon Niewieczerzal
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland.
| | - Joanna I Sulkowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
3
|
Luwanski K, Hlushchenko V, Popenda M, Zok T, Sarzynska J, Martsich D, Szachniuk M, Antczak M. RNAspider: a webserver to analyze entanglements in RNA 3D structures. Nucleic Acids Res 2022; 50:W663-W669. [PMID: 35349710 PMCID: PMC9252836 DOI: 10.1093/nar/gkac218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Advances in experimental and computational techniques enable the exploration of large and complex RNA 3D structures. These, in turn, reveal previously unstudied properties and motifs not characteristic for small molecules with simple architectures. Examples include entanglements of structural elements in RNA molecules and knot-like folds discovered, among others, in the genomes of RNA viruses. Recently, we presented the first classification of entanglements, determined by their topology and the type of entangled structural elements. Here, we introduce RNAspider - a web server to automatically identify, classify, and visualize primary and higher-order entanglements in RNA tertiary structures. The program applies to evaluate RNA 3D models obtained experimentally or by computational prediction. It supports the analysis of uncommon topologies in the pseudoknotted RNA structures. RNAspider is implemented as a publicly available tool with a user-friendly interface and can be freely accessed at https://rnaspider.cs.put.poznan.pl/.
Collapse
Affiliation(s)
- Kamil Luwanski
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Vladyslav Hlushchenko
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Daniil Martsich
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Marta Szachniuk
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Maciej Antczak
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
4
|
Abstract
Physical entanglement, and particularly knots arise spontaneously in equilibrated polymers that are sufficiently long and densely packed. Biopolymers are no exceptions: knots have long been known to occur in proteins as well as in encapsidated viral DNA. The rapidly growing number of RNA structures has recently made it possible to investigate the incidence of physical knots in this type of biomolecule, too. Strikingly, no knots have been found to date in the known RNA structures. In this Point of View Article we discuss the absence of knots in currently available RNAs and consider the reasons why knots in RNA have not yet been found, despite the expectation that they should exist in Nature. We conclude by singling out a number of RNA sequences that, based on the properties of their predicted secondary structures, are good candidates for knotted RNAs.
Collapse
Affiliation(s)
| | | | - Niles Lehman
- c Department of Chemistry , Portland State University , Portland OR , 97207 USA
| | - Henri Orland
- d Institut de Physique Théorique, Commissariat à l'énergie atomique CEA, IPhT CNRS, UMR3681 , F-91191 Gif-sur-Yvette France.,e Beijing Computational Science Research Center , Haidian District Beijing , 100084 , China
| | | |
Collapse
|
5
|
Abstract
The ongoing effort to detect and characterize physical entanglement in biopolymers has so far established that knots are present in many globular proteins and also, abound in viral DNA packaged inside bacteriophages. RNA molecules, however, have not yet been systematically screened for the occurrence of physical knots. We have accordingly undertaken the systematic profiling of the several thousand RNA structures present in the Protein Data Bank (PDB). The search identified no more than three deeply knotted RNA molecules. These entries are rRNAs of about 3,000 nt solved by cryo-EM. Their genuine knotted state is, however, doubtful based on the detailed structural comparison with homologs of higher resolution, which are all unknotted. Compared with the case of proteins and viral DNA, the observed incidence of knots in available RNA structures is, therefore, practically negligible. This fact suggests that either evolutionary selection or thermodynamic and kinetic folding mechanisms act toward minimizing the entanglement of RNA to an extent that is unparalleled by other types of biomolecules. A possible general strategy for designing synthetic RNA sequences capable of self-tying in a twist-knot fold is finally proposed.
Collapse
|
6
|
Mashaghi A, van Wijk R, Tans S. Circuit Topology of Proteins and Nucleic Acids. Structure 2014; 22:1227-1237. [DOI: 10.1016/j.str.2014.06.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 05/10/2014] [Accepted: 06/17/2014] [Indexed: 01/19/2023]
|
7
|
Devkota B, Petrov AS, Lemieux S, Boz MB, Tang L, Schneemann A, Johnson JE, Harvey SC. Structural and electrostatic characterization of pariacoto virus: implications for viral assembly. Biopolymers 2009; 91:530-8. [PMID: 19226622 DOI: 10.1002/bip.21168] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We present the first all-atom model for the structure of a T = 3 virus, pariacoto virus (PaV), which is a nonenveloped, icosahedral RNA virus and a member of the Nodaviridae family. The model is an extension of the crystal structure, which reveals about 88% of the protein structure but only about 35% of the RNA structure. New modeling methods, combining coarse-grained and all-atom approaches, were required for developing the model. Evaluation of alternative models confirms our earlier observation that the polycationic N- and C-terminal tails of the capsid proteins must penetrate deeply into the core of the virus, where they stabilize the structure by neutralizing a substantial fraction of the RNA charge. This leads us to propose a model for the assembly of small icosahedral RNA viruses: nonspecific binding of the protein tails to the RNA leads to a collapse of the complex, in a fashion reminiscent of DNA condensation. The globular protein domains are excluded from the condensed phase but are tethered to it, so they accumulate in a shell around the condensed phase, where their concentration is high enough to trigger oligomerization and formation of the mature virus.
Collapse
Affiliation(s)
- Batsal Devkota
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang Y, Zhou H, Ou-Yang ZC. Stretching single-stranded DNA: interplay of electrostatic, base-pairing, and base-pair stacking interactions. Biophys J 2001; 81:1133-43. [PMID: 11463654 PMCID: PMC1301582 DOI: 10.1016/s0006-3495(01)75770-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent single-macromolecule observations revealed that the force/extension characteristics of single-stranded DNA (ssDNA) are closely related to solution ionic concentration and DNA sequence composition. To understand this, we studied the elastic property of ssDNA through the Monte Carlo implementation of a modified freely jointed chain (FJC), with electrostatic, base-pairing, and base-pair stacking interactions all incorporated. The simulated force-extension profiles for both random and designed sequences have attained quantitative agreements with the experimental data. In low-salt solution, electrostatic interaction dominates, and at low forces, the molecule can be more easily aligned than an unmodified FJC. In high-salt solution, secondary hairpin structure appears in ssDNA by the formation of base pairs between complementary bases, and external stretching causes a hairpin-coil structural transition, which is continuous for ssDNA made of random sequences. In designed sequences such as poly(dA-dT) and poly(dG-dC), the stacking potential between base pairs encourages the aggregation of base pairs into bulk hairpins and makes the hairpin-coil transition a discontinuous (first-order) process. The sensitivity of elongation to the base-pairing rule is also investigated. The comparison of modeling calculations and the experimental data suggests that the base pairing of single-stranded polynucleotide molecules tends to form a nested and independent planar hairpin structure rather than a random intersecting pattern.
Collapse
Affiliation(s)
- Y Zhang
- Institute of Theoretical Physics, The Chinese Academy of Sciences, Beijing 100080, China.
| | | | | |
Collapse
|
9
|
Harris BA, Harvey SC. Program for analyzing knots represented by polygonal paths. J Comput Chem 1999; 20:813-818. [DOI: 10.1002/(sici)1096-987x(199906)20:8<813::aid-jcc7>3.0.co;2-i] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/1998] [Accepted: 01/15/1999] [Indexed: 11/06/2022]
|