1
|
Andrianov AM, Kornoushenko YV, Anishchenko IV, Eremin VF, Tuzikov AV. Structural analysis of the envelope gp120 V3 loop for some HIV-1 variants circulating in the countries of Eastern Europe. J Biomol Struct Dyn 2013; 31:665-83. [DOI: 10.1080/07391102.2012.706455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
2
|
Andrianov AM, Anishchenko IV. Computational Model of the HIV-1 Subtype A V3 Loop: Study on the Conformational Mobility for Structure-Based Anti-AIDS Drug Design. J Biomol Struct Dyn 2012; 27:179-93. [DOI: 10.1080/07391102.2009.10507308] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Alexander M. Andrianov
- a Institute of Bioorganic Chemistry National Academy of Sciences of Belarus , Kuprevich Street 5/2, 220141 , Minsk , Republic of Belarus
| | - Ivan V. Anishchenko
- b United Institute of Informatics Problems National Academy of Sciences of Belarus , Surganov Street 6, 220012 , Minsk , Republic of Belarus
| |
Collapse
|
3
|
Andrianov AM, Anishchenko IV, Tuzikov AV. Discovery of Novel Promising Targets for Anti-AIDS Drug Developments by Computer Modeling: Application to the HIV-1 gp120 V3 Loop. J Chem Inf Model 2011; 51:2760-7. [DOI: 10.1021/ci200255t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander M. Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str. 5/2, 220141, Minsk, Belarus
| | - Ivan V. Anishchenko
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, Surganov Str. 6, 220012, Minsk, Belarus
| | - Alexander V. Tuzikov
- Laboratory of Mathematical Cybernetics, United Institute of Informatics Problems, National Academy of Sciences of Belarus, Surganov Str. 6, 220012, Minsk, Belarus
| |
Collapse
|
4
|
Andrianov AM. Determining the Invariant Structure Elements of the HIV-1 Variable V3 Loops: Insight into the HIV-MN and HIV-Haiti Isolates. J Biomol Struct Dyn 2008; 26:247-54. [DOI: 10.1080/07391102.2008.10507240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Andrianov AM. Computational Anti-AIDS Drug Design Based on the Analysis of the Specific Interactions Between Immunophilins and the HIV-1 gp120 V3 Loop. Application to the FK506-Binding Protein. J Biomol Struct Dyn 2008; 26:49-56. [DOI: 10.1080/07391102.2008.10507222] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Andrianov AM, Veresov VG. Structural analysis of the HIV-1 gp120 V3 loop: application to the HIV-Haiti isolates. J Biomol Struct Dyn 2007; 24:597-608. [PMID: 17508782 DOI: 10.1080/07391102.2007.10507149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The model describing the structure and conformational preferences of the HIV-Haiti V3 loop in the geometric spaces of Cartesian coordinates and dihedral angles was generated in terms of NMR spectroscopy data published in literature. To this end, the following successive steps were put into effect: (i) the NMR-based 3D structure for the HIV-Haiti V3 loop in water was built by computer modeling methods; (ii) the conformations of its irregular segments were analyzed and the secondary structure elements identified; and (iii) to reveal a common structural motifs in the HIV-Haiti V3 loop regardless of its environment variability, the simulated structure was collated with the one deciphered previously for the HIV-Haiti V3 loop in a water/trifluoroethanol (TFE) mixed solvent. As a result, the HIV-Haiti V3 loop was found to offer the highly variable fragment of gp120 sensitive to its environment whose changes trigger the large-scale structural rearrangements, bringing in substantial altering the secondary and tertiary structures of this functionally important site of the virus envelope. In spite of this fact, over half of amino acid residues that reside, for the most part, in the functionally important regions of the gp120 protein and may present promising targets for AIDS drug researches, were shown to preserve their conformational states in the structures under review. In particular, the register of these amino acids holds Asn-25 that is critical for the virus binding with primary cell receptor CD4 as well as Arg-3 that is critical for utilization of CCR5 co-receptor and heparan sulfate proteoglycans. The conservative structural motif embracing one of the potential sites of the gp120 N-linked glycosylation was detected, which seems to be a promising target for the HIV-1 drug design. The implications are discussed in conjunction with the literature data on the biological activity of the individual amino acids for the HIV-1 gp120 V3 loop.
Collapse
Affiliation(s)
- A M Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich St. 5/2, 220141 Minsk, Republic of Belarus.
| | | |
Collapse
|
7
|
Andrianov AM. Study on conformational homology of the HIV-1 gp120 protein V3 loop. Structural analysis of the HIV-RF and HIV-thailand viral strains. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2007. [DOI: 10.1134/s1990750807020035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Andrianov AM, Veresov VG. Determination of structurally conservative amino acids of the HIV-1 protein gp120 V3 loop as promising targets for drug design by protein engineering approaches. BIOCHEMISTRY (MOSCOW) 2006; 71:906-14. [PMID: 16978155 DOI: 10.1134/s000629790608013x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Based on the published NMR spectroscopy data, three-dimensional structures of the HIV-1 gp120 protein V3 loop were obtained by computer modeling in the viral strains HIV-Haiti and HIV-MN. In both cases, the secondary structure elements and conformations of irregular stretches were determined for the fragment representing the principal antigenic determinant of the virus, as well as determinants of the cellular tropism and syncytium formation. Notwithstanding the high variability of the amino acid sequence of gp120 protein, more than 50% of the V3 loop residues retained their conformations in the different HIV-1 virions. The combined analysis of the findings and the literature data on the biological activity of the individual residues of the HIV-1 V3 loop resulted in identification of its structurally conservative amino acids, which seem to be promising targets for antiviral drug design by protein engineering approaches.
Collapse
Affiliation(s)
- A M Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, 220141, Belarus.
| | | |
Collapse
|
9
|
Andrianov AM. Modeling of the spatial structure of an HIV-haiti immunodominant epitope. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Abstract
The model describing the conformational properties of the HIV-1 principal neutralizing determinant in the geometric space of dihedrals was generated in terms of NMR spectroscopy data published in literature. To gain an object in view, the following successive steps were put into effect: (i) the NMR-based local structures for the HIV(MN) V3 loop were determined in water and in a mixed water/trifluoroethanol (TFE) solvent (7:3), (ii) in either case, the conformations of its irregular segments were analyzed and the secondary structure elements identified, (iii) to appreciate the degree of conformational mobility of the stretch of interest, the simulated structures were compared with each other, (iv) to detect the amino acids retaining their conformations inside the diverse HIV-1 isolates, the structures computed were collated with the one derived previously for the V3 loop from Thailand isolate, and (v) as a matter of record, the structurally rigid residues, that may present the forward-looking targets for AIDS drug researches, were revealed. Summing up the principal results arising from these studies, the following conclusions were drawn: I. The HIV(MN) V3 loop offers the highly mobile fragment of gp120 sensitive to its environment whose changes trigger the large-scale structural reforms, bringing in substantial altering the secondary structure of this functionally important site of the virus envelope. II. In water, it exhibits extended site 1-14 separated by double beta-turn 15-20 with unordered region 21-35. III. Adding the TFE gives rise to destruction of the regular structure in the V3 loop N-terminal, stimulates the formation of 3(10)-helix in site 24-31, and affects also its central region 20-25 forming the HIV-1 immunogenic crown. IV. Regardless of statistically significant differences between local structures of the HIV(MN) V3 loop in water and in water/TFE solution, over one-third of residues keeps their conformational states; the register of these amino acids comprises Asn-25 critical for virus binding with primary cell receptor CD4 as well as Arg-3 critical for utilization of CCR5 coreceptor. V. There are no conserved structural motifs within the V3 loops from Minnesota and Thailand HIV-1 strains. However, perceptible portion of amino acids (more than 35%), including those appearing in the functionally important regions of gp120, holds the values of dihedral angles in which case. The implications are discussed in conjunction with the data on the experimental observations for the HIV-1 principal neutralizing determinant.
Collapse
Affiliation(s)
- A M Andrianov
- Institute of Bioorganic Chemistry, Belarus Academy of Sciences, ac. Kuprevich St., 5/2, 220141 Minsk, Republic of Belarus.
| |
Collapse
|
11
|
Andrianov AM. Dual Spatial Folds and Different Local Structures of the HIV-1 Immunogenic Crown in Various Virus Isolates. J Biomol Struct Dyn 2004; 22:159-70. [PMID: 15317477 DOI: 10.1080/07391102.2004.10506992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Local and global structural properties of the HIV-1 principal neutralizing epitope were studied in terms of NMR spectroscopy data reported in literature for the HIV-Haiti and HIV-RF isolates. To this effect, the NMR-based method comprising a probabilistic model of protein conformation in conjunction with the molecular mechanics and quantum chemical computations was used for determining the ensembles of conformers matching the NMR requirements and energy criteria. As a matter of record, the high resolution 3D structure models were constructed for the HIV-Haiti and HIV-RF immunogenic crowns, and their geometric parameters were collated with the ones of conformers derived previously for describing the conformational features of immunogenic tip of gp120 from Thailand and MN HIV-1 strains. The HIV-1 neutralization site was demonstrated to constitute in water solution highly flexible system sensitive to its environment. This inference is completely valid for the geometric space of dihedral angles where statistically significant differences in local structures of simulated conformers have been found for all virus isolates of interest. In spite of this fact, the stretch analyzed was shown to manifest a certain conservatism in the space of atomic coordinates, building up in four HIV-1 isolates two spatial folds similar to those observed in crystal for the V3 loop peptides bound to different neutralizing Fabs. The results are discussed in the light of literature data on HIV-1 neutralizing epitope structure.
Collapse
Affiliation(s)
- Alexander M Andrianov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich St., 5/2, 220141 Minsk, Republic of Belarus.
| |
Collapse
|
12
|
Andrianov AM, Sokolov YA. 3D Structure Model of the Principal Neutralizing Epitope of Minnesota HIV-1 Isolate. J Biomol Struct Dyn 2004; 21:577-90. [PMID: 14692801 DOI: 10.1080/07391102.2004.10506950] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A hierarchical procedure, using a "bottom-up" strategy and combining (i). a probabilistic approach for estimating all possible starting structures, (ii). restrained molecular mechanics algorithms for preliminary selection of all energetically preferred conformers, as well as (iii). quantum chemical computations for refining their geometry, was used to study the structural properties of the HIV-MN neutralizing epitope in terms of NMR spectroscopy data. As a result, only one of initial structures matching the experimental and theoretical data was found to be well-ground for implementing the function of immunoreactive conformation of the virus immunogenic crown. The geometric parameters of this structure in water solution were shown to correspond to a double beta-turn conformation similar to that revealed in crystal for synthetic molecules imitating the central region of the HIV-MN V3 loop. The following conclusion was drawn from the comparative analysis of simulated structure with the one computed previously: the HIV-MN immunogenic tip has some inherent conformational flexibility that manifests at the alterations of hexapeptide environment and leads to the structural transitions changing the local conformation of the stretch of interest but retaining its spatial main chain fold. As a matter of record, the high resolution 3D structure model for the HIV-MN principal neutralization site was constructed, and its geometric parameters were compared with the corresponding characteristics of conformers derived earlier for describing the conformational features of immunogenic tip of gp120 from Thailand HIV-1 isolate.
Collapse
Affiliation(s)
- Alexander M Andrianov
- Institute of Bioorganic Chemistry, Belarus Academy of Sciences, Kuprevich St., 5/2, 220141 Minsk, Republic of Belarus.
| | | |
Collapse
|
13
|
Andrianov AM, Sokalov YA. Structure and polymorphism of the principal neutralization site of Thailand HIV-1 isolate. J Biomol Struct Dyn 2003; 20:603-13. [PMID: 12529159 DOI: 10.1080/07391102.2003.10506877] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Refining the geometric parameters for the ensemble of conformers, derived earlier in terms of NMR-spectroscopy data for the immunogenic tip of Thailand HIV-1 isolate, was carried out by quantum chemical methods. As a result, (i) the energy characteristics of initial structures were significantly improved, (ii) their relative locations on the scale of formation heats were determined, and (iii) the energy barriers between conformers under study were computed. On the basis of all data obtained, the high resolution 3D structure model, describing the set of stable conformers and containing the biologically active conformation, was proposed for neutralizing epitope of Thailand HIV-1 isolate. The following major conclusions were made based on the analysis of simulated conformations: i) the Gly-Pro-Gly-Gln-Val-Phe stretch forming the immunogenic crown of Thailand HIV-1 isolate exhibits the properties characteristic for metastable oligopeptide that constitutes in solution the dominant structure with other conformations admissible; (ii) three structures out of five NMR-based starting models form the cluster of conformers which adequately describes general conformational features of this functionally important site of gp120; (iii) two structures residing in this cluster are found to be well-ground for implementing the function of immunoreactive conformation of the stretch of interest; (iv) in spite of this observation, the "global" structure which gives rise to inverse gamma-turn in the central Gly-Pro-Gly crest of Thailand HIV-1 gp120 is proposed to be the most probable conformation responsible for the formation of viral antigen-antibody complex in particular case under study.
Collapse
Affiliation(s)
- Alexander M Andrianov
- Institute of Bioorganic Chemistry, Belarus Academy of Sciences, Kuprevich St., 5/2, 220141 Minsk, Republic of Belarus.
| | | |
Collapse
|
14
|
Abstract
The model of locally accurate conformation for the HIV-Thailand principal neutralizing determinant (PND) located within the V3 loop of the virus envelope protein gp120 was built in terms of NMR spectroscopy data. To this end, the NMR-based conformational analysis of synthetic molecule representing the peptide copy of the fragment under study was carried out using the published sequential d connectivity data and values of spin-spin coupling constants. As a result, (i) the local structure for the V3 loop from Thailand isolate was determined, (ii) the conformations of its irregular segments were analyzed, and the secondary structure elements identified, (iii) the ensemble of conformers matching the experimental and theoretical data was derived for the stretch forming the neutralizing epitope of the HIV-Thailand PND, (iv) to estimate the probability of realizing each of these conformers in solution, the results obtained were collated with the X-ray data for corresponding segments in synthetic molecules imitating the central region of the HIV-MN PND as well as for homologous segments 39-44 in Bence-Jonce REI protein (BJRP), 41-46 in immunoglobulin lambda (Ig lambda), and 50-55 in beta-chain of horse hemoglobin (HH), (v) to find the conserved structural motifs inside diverse HIV-1 isolates, the structure determined was compared with the one derived earlier for the HIV-MN PND from NMR spectroscopy data, (vi) on the basis of all data obtained, the 3D structure model describing the set of biologically relevant conformations, which may present different antigenic determinants to the immune system in various HIV-1 isolates, was proposed for the immunogenic crown of the V3 loop. The results obtained are discussed in conjunction with the data on the structure for the HIV-1 PND reported in literature.
Collapse
Affiliation(s)
- Alexander M Andrianov
- Institute of Bioorganic Chemistry, Belarus Academy of Sciences, Kuprevich St., 5/2, 220141 Minsk, Republic of Belarus.
| |
Collapse
|