Detection of cell-free DNA nanoparticles in insulator based dielectrophoresis systems.
J Chromatogr A 2020;
1626:461262. [PMID:
32797810 DOI:
10.1016/j.chroma.2020.461262]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 01/22/2023]
Abstract
In this paper, a semi-analytical investigation was performed to study the effect of the geometrical parameters of insulator-based dielectrophoresis (iDEP) systems for cell free DNA (cfDNA) trapping. For this purpose, first electrical potential and fluid flow fields were calculated by solving the governing equations including Poisson and Navier-stokes equations with appropriate boundary conditions (BCs) and then a Lagrangian approach was utilized to analyze the motion of cfDNA under the most important forces affected on it including Brownian, Drag, electrophoresis and dielectrophoresis (DEP) forces. The effect of the different parameters such as the electrical conductivity of the medium, shape and geometrical parameters of the insulators on the dielectrophoretic behavior of cfDNA was studied and the optimal value of these parameters was presented. Finally, in order to predict the minimum voltage required for cfDNA trapping, artificial neural network (ANN) was utilized and a relation between input and output parameters was introduced.
Collapse