1
|
Mohanty L, Mishra C, Pradhan SK, Mishra SR, Nayak G. Identification of novel polymorphism and in silico analysis of caprine DNAJB3 gene. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
2
|
Houndonougbo Y, Pugh B, VanWormer K, April C, Burgis N. Structural dynamics of inosine triphosphate pyrophosphatase (ITPA) protein and two clinically relevant mutants: molecular dynamics simulations. J Biomol Struct Dyn 2020; 39:1236-1247. [PMID: 32129147 DOI: 10.1080/07391102.2020.1727363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The inosine triphosphate pyrophosphatase (ITPA) protein is responsible for removing noncanonical purine nucleoside triphosphates from intracellular nucleotide pools. Absence of ITPA results in genomic instability and increased levels of inosine in DNA and RNA. The proline to threonine substitution at position 32 (P32T) affects roughly 15% of the global population and can modulate treatment outcomes for cancer, lupus, and hepatitis C patients. The substitution of arginine with cysteine at position 178 (R178C) is extremely uncommon and has only been reported in a small cohort of early infantile encephalopathy patients suggesting that a functional ITPA protein is required for life in humans. Here we present molecular dynamic simulations that describe the structure and dynamics of the wild-type ITPA homodimer and two of its clinically relevant mutants, P32T and R178C. The simulation results indicate that both the P32T and R178C mutations alter the structure and dynamic properties of the protein and provide a possible explanation of the experimentally observed effect of the mutations on ITPA activity. Specifically, the mutations increased the overall flexibility of the protein and changed the dominant collective motions of the top lobe as well as the helix 2 of the lower lobe. Moreover, we have identified key active-site residues that are classified as essential or intermediate for inosine triphosphate (ITP) hydrolyzing activity based on their hydrogen bond occupancy. Here we also present biochemical data indicating that the R178C mutant has very low ITP hydrolyzing activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yao Houndonougbo
- Department of Chemistry and Biochemistry, Eastern Washington University, Cheney, WA, USA
| | - Bethany Pugh
- Department of Chemistry and Biochemistry, Eastern Washington University, Cheney, WA, USA
| | - Kandise VanWormer
- Department of Chemistry and Biochemistry, Eastern Washington University, Cheney, WA, USA
| | - Caitlin April
- Department of Chemistry and Biochemistry, Eastern Washington University, Cheney, WA, USA
| | - Nicholas Burgis
- Department of Chemistry and Biochemistry, Eastern Washington University, Cheney, WA, USA
| |
Collapse
|
3
|
Study of the Wilcox torsion balance in solution for a Tröger's base derivative with hexyl-and heptyl substituents using a combined molecular mechanics and quantum chemistry approach. J Mol Model 2019; 25:69. [PMID: 30778689 DOI: 10.1007/s00894-019-3935-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/21/2019] [Indexed: 02/06/2023]
Abstract
The folding equilibrium of the Wilcox torsion balance in solution has been studied using a molecular mechanics method for sampling the conformational space and semi-empirical and density-functional quantum chemistry methods for characterizing the relative stabilities of various solute-solvent clusters extracted with the aid of the MD-quench technique from the different simulations that were performed. The role of the solvent environment has been analyzed by choosing four solvents of different polarities, namely water, acetone, tetrachloromethane, and n-hexane. In all cases, it is found that the attractive intramolecular interactions in folded conformations are strongly compensated by the increase of the solute-solvent interaction energies when the molecule unfolds. The latter can be well explained by the larger number of solvent molecules that can bind to the Wilcox molecule when in an unfolded conformation. The results of this work therefore support the experimental results of Yang et al. (Nature Chem 5:1006, 2013) that the folding free energy of the Wilcox balance is strongly reduced in solution as compared to the gas phase.
Collapse
|
4
|
Guskova O, Savchenko V, König U, Uhlmann P, Sommer JU. How do immobilised cell-adhesive Arg–Gly–Asp-containing peptides behave at the PAA brush surface? MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1502429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Olga Guskova
- Leibniz Institut für Polymerforschung Dresden e.V., Dresden, Germany
- Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Vladyslav Savchenko
- Fakultät Umweltwissenschaften, Technische Universität Dresden, Dresden, Germany
| | - Ulla König
- Leibniz Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Petra Uhlmann
- Leibniz Institut für Polymerforschung Dresden e.V., Dresden, Germany
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jens-Uwe Sommer
- Leibniz Institut für Polymerforschung Dresden e.V., Dresden, Germany
- Dresden Center for Computational Materials Science, Technische Universität Dresden, Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Abstract
This article presents a review of the field of molecular modeling of peptides. The main focus is on atomistic modeling with molecular mechanics potentials. The description of peptide conformations and solvation through potentials is discussed. Several important computer simulation methods are briefly introduced, including molecular dynamics, accelerated sampling approaches such as replica-exchange and metadynamics, free energy simulations and kinetic network models like Milestoning. Examples of recent applications for predictions of structure, kinetics, and interactions of peptides with complex environments are described. The reliability of current simulation methods is analyzed by comparison of computational predictions obtained using different models with each other and with experimental data. A brief discussion of coarse-grained modeling and future directions is also presented.
Collapse
Affiliation(s)
- Krzysztof Kuczera
- Departments of Chemistry and Molecular Biosciences, University of Kansas, 1251 Wescoe Hall Drive, Room 5090, Lawrence, KS, 66045, USA,
| |
Collapse
|
6
|
Houndonougbo Y, Kuczera K, Jas GS. Effects of CMAP and Electrostatic Cutoffs on the Dynamics of an Integral Membrane Protein: The Phospholamban Study. J Biomol Struct Dyn 2008; 26:17-34. [DOI: 10.1080/07391102.2008.10507220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Xiang TX, Anderson BD. Liposomal drug transport: a molecular perspective from molecular dynamics simulations in lipid bilayers. Adv Drug Deliv Rev 2006; 58:1357-78. [PMID: 17092601 DOI: 10.1016/j.addr.2006.09.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 09/04/2006] [Indexed: 11/21/2022]
Abstract
Computational methods to predict drug permeability across biomembranes prior to synthesis are increasingly desirable to minimize the investment in drug design and development. Significant progress in molecular dynamics (MD) simulation methodologies applied to lipid bilayer membranes, for example, is making it possible to move beyond characterization of the membranes themselves to explore various thermodynamic and kinetic processes governing membrane binding and transport. Such methods are also likely to be directly applicable to the design and optimization of liposomal delivery systems. MD simulations are particularly valuable in addressing issues that are difficult to explore in laboratory experiments due to the heterogeneity of lipid bilayer membranes at the molecular level. Insights emerging from MD simulations are contributing to an understanding of which regions within bilayers are most and least favored by solutes at equilibrium as the solute structure is varied, local diffusivities of permeants, and the origin of the amplified selectivity to permeant size imposed by lipid bilayer membranes, particularly as changes in composition increase acyl chain ordering.
Collapse
Affiliation(s)
- Tian-Xiang Xiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
8
|
Xiang TX, Anderson BD. Conformational structure, dynamics, and solvation energies of small alanine peptides in water and carbon tetrachloride. J Pharm Sci 2006; 95:1269-87. [PMID: 16625657 DOI: 10.1002/jps.20453] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The rate-limiting barrier for peptide transport across lipid bilayers is the nonpolar hydrocarbon interior. Permeating peptides may undergo conformational changes during their transfer from an aqueous solution into the barrier domain, thus facilitating peptide transport. To test this hypothesis, all-atom and explicit-solvent molecular dynamics (MD) simulations have been conducted on a series of small peptides, p-toluyl-Ala(n) (n = 0-3) used previously in transport experiments, to explore their conformational structures, dynamics and solvation free energies in water and carbon tetrachloride (CCl(4)). The conformations of the p-toluyl alanine di- and tri-peptides in water were found to be far from random coils, with P(II) and alpha(R) dominating but with smaller populations of seven-membered (c(7)) and five-membered rings (c(5)). In contrast, the seven-membered ring, c(7), along with c(5) dominated in CCl(4). These results indicate that the conformational preferences of the alanine peptides are highly sensitive to solvent. Dynamically, stable seven-membered ring formation occurred on a time scale of 10 ps while larger ring-sizes (e.g., 10-membered rings) were observed much less frequently. The values of adjacent torsional angles (phi(1), psi(1)) were dependent on neighboring torsional angles. Thermal motions of neighboring torsions leading to transitions between c(7), c(5), alpha(R), and P(II) conformers were highly cooperative while longer range correlations between transitions of adjacent sets of torsions (phi(1), psi(1)) and (phi(2), psi(2)) were less evident. Peptide folding in CCl(4) lowers the intramolecular electrostatic energies. This, along with hydrophobic interactions, favors partitioning into CCl(4). These effects only partially offset other types of intramolecular interactions and peptide-solvent polar interactions that are more favorable in water, leading to net transfer free energies (3-7 kcal/mol) that disfavor peptide transfer from water into carbon tetrachloride.
Collapse
Affiliation(s)
- Tian-Xiang Xiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
9
|
Krogmeier SL, Reddy DS, Vander Velde D, Lushington GH, Siahaan TJ, Middaugh CR, Borchardt RT, Topp EM. Deamidation of model β-turn cyclic peptides in the solid state. J Pharm Sci 2005; 94:2616-31. [PMID: 16258986 DOI: 10.1002/jps.20468] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To investigate the importance of secondary structure on peptide deamidation in the solid state, two cyclic beta-turn peptides and their linear analogs were used as models of Asn residues in structured and unstructured domains, and incorporated into poly(vinyl pyrrolidone) (PVP)-based lyophilized solids. The secondary structure of the model peptides was determined in solution and the solid state using a combination of nuclear magnetic resonance (NMR) spectroscopy, circular dichroism (CD), and Fourier transform infrared (FTIR) spectroscopy. The model beta-turn cyclic peptides were found to be type II beta-turns while the linear analogs were determined to be predominantly unstructured. Quantitatively, the cyclic peptides consisted of approximately 80% beta-turn while the linear analogs contained only 30%-35% beta-turn. To characterize the solid environment, T(g), and moisture content of the solid-state formulations were determined. Accelerated stability studies were conducted in the solid state at 37 degrees C using formulations lyophilized from solutions at pH 8.8 (0.1 M borate buffer). The effect of matrix mobility on solid-state deamidation was investigated by altering the moisture content through variation of relative humidity or the addition of a plasticizer. Cyclic peptides degraded 1.2-8 times slower than the linear analogs under all of the conditions studied. The observed rate constants, however, for all of the peptides decreased dramatically (four orders of magnitude) in the glassy solids. This suggests the greater importance of matrix mobility in solid-state degradation. Molecular dynamics (MD) simulations were also performed to explore the low energy, preferred state of the peptides, and determine the structure around the beta-turn.
Collapse
Affiliation(s)
- Stephanie L Krogmeier
- Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue Lawrence, Kansas, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Houndonougbo Y, Kuczera K, Jas GS. Structure and Dynamics of Phospholamban in Solution and in Membrane Bilayer: Computer Simulations. Biochemistry 2005; 44:1780-92. [PMID: 15697203 DOI: 10.1021/bi0488404] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have performed molecular dynamics simulations of phospholamban (PLB), a 52-residue integral membrane protein that inhibits calcium ATPase in the cardiac sarcoplasmic reticulum. We present a microscopic description of the structure and dynamics of PLB in solution and membrane environments, based on 10 ns molecular dynamics simulations of PLB in lipid bilayer and 5 ns simulations in methanol and water, and a water-soluble model of PLB in water. Throughout the simulations, PLB retains its "L"shape, with two well-defined helical domains at the N- and C-termini. In the simulations of PLB in methanol and water, the helices were almost perpendicular, with average interhelix angles of 54 +/- 13 degrees and 63 +/-15 degrees , respectively. In the lipid bilayer trajectory, both the interhelix angle and its fluctuations were larger, with an average of 130 +/- 19 degrees and with the transmembrane C-terminal approximately perpendicular to the bilayer plane. The internal dynamics of phospholamban is characterized by large amplitude collective motions of the two helical domains: hinge bending, twisting of both N- and C-terminal helices, and flexing of the C-terminal helix. The central linker of PLB is highly flexible, due mostly to elastic deformations of this region. The simulation results are in good agreement with NMR data on PLB secondary structure and helix orientations in solution, micelles, and lipid bilayers, as well as fluorescence measurements of interdomain distances. Our most interesting findings involve the details of the PLB dynamics, which are difficult to obtain by experimental approaches. Two kinds of motions of the helical domains found in the simulations can clearly have functional roles. The population of conformations with relatively open interdomain angles, as well as large fluctuations of this coordinate in the bilayer, allows the N-terminal helix to come into contact with the PLB binding site on the calcium ATPase, while the presence of twisting motions around its axis enables the helix to orient the correct face to the binding site.
Collapse
Affiliation(s)
- Yao Houndonougbo
- Higuchi Biosciences Center, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, USA
| | | | | |
Collapse
|
11
|
Kidane AG, Salacinski HJ, Punshon G, Ramesh B, Srai KS, Seifalian AM. Synthesis and evaluation of amphiphilic RGD derivatives: Uses for solvent casting in polymers and tissue engineering applications. Med Biol Eng Comput 2003; 41:740-5. [PMID: 14686601 DOI: 10.1007/bf02349983] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Derivatives containing arginine-glycine-aspartic acid (RGD) inhibit fibrinogen binding to activated platelets and promote endothelial and smooth muscle cell attachment. An amphiphilic derivative of RGD that can be dissolved in an organic solvent has potential in the development of non-thrombogenic biomaterials. Such a derivative, LA-GRGD, was synthesised by coupling glycine-arginine-glycine-aspartic acid (GRGD) with lauric acid (LA). Its solubility and antithrombotic, cytotoxic and cell-binding effects were then evaluated in comparison with heparin (which is used clinically) and a fibronectin-engineered protein polymer (FEPP). Thromboelastography (TEG) was used to measure blood clotting time using fresh whole blood from healthy volunteers. Tissue factor (TF) activity was measured using plasma with a standard prothrombin time assay (PT). Cytotoxicity was assessed on human umbilical cord endothelial cells (HUVECs) using an Alamar blue assay. Solubility of the conjugate was assessed in a co-solvent. These techniques were used to study LA-GRGD, using heparin and FEPP as controls. The amphiphilic property of LA-GRGD was dependent on the feed mole ratio of GRGD to LA. LA-GRGD was soluble in acetone:water and water. LA-GRGD inhibited TF by >90% and prolonged TEG-r by 8.2+/-3.3 min (200 microg ml(-1)). Heparin inhibited TF by >90%, but prolonged TEG-r by 97.4+/-1.6 min (1 U ml(-1)); FEPP inhibited TF by >90% (100 microg ml(-1)) and prolonged TEG-r by 73.7+/-8.4 min (10 microg ml(-1)). Heparin had no cytotoxic effect on EC metabolism and viability at the concentrations studied (0.1-100 U ml(-1)). No significant cytotoxic effect was produced by LA-GRGD or FEPP at concentrations ranging from 0.1 microg ml(-1) to 50 microg ml(-1), but, at higher concentrations (100 microg ml(-1) and 200 microg ml(-1)), a detrimental effect was observed. Cell binding studies showed that LA-GRGD bound 29% of ECs compared with FEPP (60%) and heparin (22%). This new approach for synthesising amphiphilic RGD and its analogues has potential as a drug delivery system for the manufacture of new polymer formulations for use in bypass grafts and other tissue-engineered devices.
Collapse
Affiliation(s)
- A G Kidane
- Tissue Engineering Centre, University Department of Surgery, Royal Free & University College Medical School, University College London, The Royal Free Hospital, London, UK
| | | | | | | | | | | |
Collapse
|