1
|
Ghasemi M, Friedowitz S, Larson RG. Overcharging of polyelectrolyte complexes: an entropic phenomenon. SOFT MATTER 2020; 16:10640-10656. [PMID: 33084721 DOI: 10.1039/d0sm01466d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Overcharging in complex coacervation, in which a polyelectrolyte complex coacervate (PEC) initially containing equal moles of the cationic and anionic monomers absorbs a large excess of one type of polyelectrolyte species, is predicted using a recently developed thermodynamic model describing complexation through a combination of reversible ion binding on the chains and long-range electrostatic correlations. We show that overcharging is favored roughly equally by the translational entropy of released counterions and the binding entropy of polyelectrolytes in the polyelectrolyte complex, thus helping resolve competing explanations for overcharging in the literature. We find that the extent of overcharging is non-monotonic in the concentration of added salt and increases with both strength of ion-pairing between polyions and chain hydrophobicity. The predicted extent of overcharging of the PEC is directly compared with that of multilayers made of poly(diallyldimethylammonium), PDADMA, and poly(styrene-sulfonate), PSS, overcompensated by the polycation in two different salts: KBr and NaCl. Accounting for the specificity of salt ion interactions with the polyelectrolytes, we find good qualitative agreement between theory and experiment.
Collapse
Affiliation(s)
- Mohsen Ghasemi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
2
|
Korolev N. How potassium came to be the dominant biological cation: of metabolism, chemiosmosis, and cation selectivity since the beginnings of life. Bioessays 2020; 43:e2000108. [PMID: 33191554 DOI: 10.1002/bies.202000108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022]
Abstract
In the cytoplasm of practically all living cells, potassium is the major cation while sodium dominates in the media (seawater, extracellular fluids). Both prokaryotes and eukaryotes have elaborate mechanisms and spend significant energy to maintain this asymmetric K+ /Na+ distribution. This essay proposes an original line of evidence to explain how bacteria selected potassium at the very beginning of the evolutionary process and why it remains essential for eukaryotes.
Collapse
Affiliation(s)
- Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, Singapore
| |
Collapse
|
3
|
Onufriev AV, Schiessel H. The nucleosome: from structure to function through physics. Curr Opin Struct Biol 2019; 56:119-130. [DOI: 10.1016/j.sbi.2018.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
|
4
|
|
5
|
Multiscale coarse-grained modelling of chromatin components: DNA and the nucleosome. Adv Colloid Interface Sci 2016; 232:36-48. [PMID: 26956528 DOI: 10.1016/j.cis.2016.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 11/23/2022]
Abstract
To model large biomolecular systems, such as cell and organelles an atomistic description is not currently achievable and is not generally practical. Therefore, simplified coarse-grained (CG) modelling becomes a necessity. One of the most important cellular components is chromatin, a large DNA-protein complex where DNA is highly compacted. Recent progress in coarse graining modelling of the major chromatin components, double helical DNA and the nucleosome core particle (NCP) is presented. First, general principles and approaches allowing rigorous bottom-to-top generation of interaction potentials in the CG models are presented. Then, recent CG models of DNA are reviewed and their adequacy is benchmarked against experimental data on the salt dependence of DNA flexibility (persistence length). Furthermore, a few recent CG models of the NCP are described and their application for studying salt-dependent NCP-NCP interaction is discussed. An example of a multiscale approach to CG modelling of chromatin is presented where interactions and self-assembly of thousands of NCPs in solution are observed.
Collapse
|
6
|
Kukucka J, Wyllie T, Read J, Mahoney L, Suphioglu C. Human neuronal cells: epigenetic aspects. Biomol Concepts 2015; 4:319-33. [PMID: 25436583 DOI: 10.1515/bmc-2012-0053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/26/2013] [Indexed: 11/15/2022] Open
Abstract
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) promote histone posttranslational modifications, which lead to an epigenetic alteration in gene expression. Aberrant regulation of HATs and HDACs in neuronal cells results in pathological consequences such as neurodegeneration. Alzheimer's disease is the most common neurodegenerative disease of the brain, which has devastating effects on patients and loved ones. The use of pan-HDAC inhibitors has shown great therapeutic promise in ameliorating neurodegenerative ailments. Recent evidence has emerged suggesting that certain deacetylases mediate neurotoxicity, whereas others provide neuroprotection. Therefore, the inhibition of certain isoforms to alleviate neurodegenerative manifestations has now become the focus of studies. In this review, we aimed to discuss and summarize some of the most recent and promising findings of HAT and HDAC functions in neurodegenerative diseases.
Collapse
|
7
|
Principles of electrostatic interactions and self-assembly in lipid/peptide/DNA systems: applications to gene delivery. Adv Colloid Interface Sci 2014; 205:221-9. [PMID: 24055029 DOI: 10.1016/j.cis.2013.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/23/2013] [Accepted: 08/23/2013] [Indexed: 11/22/2022]
Abstract
Recently, great progress has been achieved in development of a wide variety of formulations for gene delivery in vitro and in vivo, which include lipids, peptides and DNA (LPD). Additionally, application of natural histone-DNA complexes (chromatin) in combination with transfection lipids has been suggested as a potential route for gene delivery (chromofection). However, the thermodynamic mechanisms responsible for formation of the ternary lipid-peptide-DNA supramolecular structures have rarely been analyzed. Using recent experimental studies on LPD complexes (including mixtures of chromatin with cationic lipids) and general polyelectrolyte theory, we review and analyze the major determinants defining the internal structure, particle composition and size, surface charge and ultimately, transfection properties of the LPD formulations.
Collapse
|
8
|
Yan J, Berezhnoy NV, Korolev N, Su CJ, Nordenskiöld L. Structure and internal organization of overcharged cationic-lipid/peptide/DNA self-assembly complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1794-800. [DOI: 10.1016/j.bbamem.2012.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/15/2012] [Accepted: 03/30/2012] [Indexed: 10/28/2022]
|
9
|
Korolev N, Berezhnoy NV, Eom KD, Tam JP, Nordenskiöld L. A universal description for the experimental behavior of salt-(in)dependent oligocation-induced DNA condensation. Nucleic Acids Res 2012; 40:2808-21. [PMID: 22563605 PMCID: PMC3729243 DOI: 10.1093/nar/gks214] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We report a systematic study of the condensation of plasmid DNA by oligocations with variation of the charge, Z, from +3 to +31. The oligocations include a series of synthetic linear ε-oligo(L-lysines), (denoted εKn, n = 3–10, 31; n is the number of lysines with the ligand charge Z = n+1) and branched α-substituted homologues of εK10: εYK10, εLK10 (Z = +11); εRK10, εYRK10 and εLYRK10 (Z = +21). Data were obtained by light scattering, UV absorption monitored precipitation assay and isothermal titration calorimetry in a wide range concentrations of DNA and monovalent salt (KCl, CKCl). The dependence of EC50 (ligand concentration at the midpoint of DNA condensation) on C(KCl) shows the existence of a salt-independent regime at low C(KCl) and a salt-dependent regime with a steep rise of EC50 with increase of C(KCl). Increase of the ligand charge shifts the transition from the salt-independent to salt-dependent regime to higher C(KCl). A novel and simple relationship describing the EC50 dependence on DNA concentration, charge of the ligand and the salt-dependent dissociation constant of the ligand–DNA complex is derived. For the ε-oligolysines εK6–εK10, the experimental dependencies of EC50 on C(KCl) and Z are well-described by an equation with a common set of parameters. Implications from our findings for understanding DNA condensation in chromatin are discussed.
Collapse
Affiliation(s)
- Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.
| | | | | | | | | |
Collapse
|
10
|
Korolev N, Fan Y, Lyubartsev AP, Nordenskiöld L. Modelling chromatin structure and dynamics: status and prospects. Curr Opin Struct Biol 2012; 22:151-9. [PMID: 22305428 DOI: 10.1016/j.sbi.2012.01.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 11/28/2022]
Abstract
The packaging of genomic DNA into chromatin in the eukaryotic cell nucleus demands extensive compaction. This requires attractive nucleosome-nucleosome interactions to overcome repulsion between the negatively charged DNA segments as well as other constraints. At the same time, DNA must be dynamically accessible to the cellular machinery that operates on it. Recent progress in the experimental characterisation of the higher order structure and dynamics of well-defined chromatin fibres has stimulated the attempts at theoretical description of chromatin and the nucleosome. Here we review the present status of chromatin modelling, with particular emphasis on coarse-grained computer simulation models, the role of electrostatic interactions, and discuss future perspectives in the field.
Collapse
Affiliation(s)
- Nikolay Korolev
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | | | | | | |
Collapse
|
11
|
Yan J, Korolev N, Eom KD, Tam JP, Nordenskiöld L. Biophysical Properties and Supramolecular Structure of Self-Assembled Liposome/ε-Peptide/DNA Nanoparticles: Correlation with Gene Delivery. Biomacromolecules 2011; 13:124-31. [DOI: 10.1021/bm201359r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiang Yan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore,
637551
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore,
637551
| | - Khee Dong Eom
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore,
637551
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore,
637551
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore,
637551
| |
Collapse
|
12
|
Fenley AT, Adams DA, Onufriev AV. Charge state of the globular histone core controls stability of the nucleosome. Biophys J 2010; 99:1577-85. [PMID: 20816070 PMCID: PMC2931741 DOI: 10.1016/j.bpj.2010.06.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 06/11/2010] [Accepted: 06/21/2010] [Indexed: 11/26/2022] Open
Abstract
Presented here is a quantitative model of the wrapping and unwrapping of the DNA around the histone core of the nucleosome that suggests a mechanism by which this transition can be controlled: alteration of the charge state of the globular histone core. The mechanism is relevant to several classes of posttranslational modifications such as histone acetylation and phosphorylation; several specific scenarios consistent with recent in vivo experiments are considered. The model integrates a description based on an idealized geometry with one based on the atomistic structure of the nucleosome, and the model consistently accounts for both the electrostatic and nonelectrostatic contributions to the nucleosome free energy. Under physiological conditions, isolated nucleosomes are predicted to be very stable (38 +/- 7 kcal/mol). However, a decrease in the charge of the globular histone core by one unit charge, for example due to acetylation of a single lysine residue, can lead to a significant decrease in the strength of association with its DNA. In contrast to the globular histone core, comparable changes in the charge state of the histone tail regions have relatively little effect on the nucleosome's stability. The combination of high stability and sensitivity explains how the nucleosome is able to satisfy the seemingly contradictory requirements for thermodynamic stability while allowing quick access to its DNA informational content when needed by specific cellular processes such as transcription.
Collapse
Affiliation(s)
| | - David A. Adams
- Department of Physics, University of Michigan, Ann Arbor, Michigan
| | - Alexey V. Onufriev
- Department of Physics, Virginia Tech, Blacksburg, Virginia
- Computer Science, Virginia Tech, Blacksburg, Virginia
| |
Collapse
|
13
|
Korolev N, Berezhnoy NV, Eom KD, Tam JP, Nordenskiöld L. A universal description for the experimental behavior of salt-(in)dependent oligocation-induced DNA condensation. Nucleic Acids Res 2009; 37:7137-50. [PMID: 19773427 PMCID: PMC2790876 DOI: 10.1093/nar/gkp683] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/03/2009] [Accepted: 08/03/2009] [Indexed: 01/19/2023] Open
Abstract
We report a systematic study of the condensation of plasmid DNA by oligocations with variation of the charge, Z, from +3 to +31. The oligocations include a series of synthetic linear epsilon-oligo(l-lysines), (denoted epsilonKn, n = 3-10, 31; n is the number of lysines equal to the ligand charge) and branched alpha-substituted homologues of epsilonK10: epsilonYK10, epsilonLK10 (Z = +10); epsilonRK10, epsilonYRK10 and epsilonLYRK10 (Z = +20). Data were obtained by light scattering, UV absorption monitored precipitation assay and isothermal titration calorimetry in a wide range concentrations of DNA and monovalent salt (KCl, C(KCl)). The dependence of EC(50) (ligand concentration at the midpoint of DNA condensation) on C(KCl) shows the existence of a salt-independent regime at low C(KCl) and a salt-dependent regime with a steep rise of EC(50) with increase of C(KCl). Increase of the ligand charge shifts the transition from the salt-independent to salt-dependent regime to higher C(KCl). A novel and simple relationship describing the EC(50) dependence on DNA concentration, charge of the ligand and the salt-dependent dissociation constant of the ligand-DNA complex is derived. For the epsilon-oligolysines epsilonK3-epsilonK10, the experimental dependencies of EC(50) on C(KCl) and Z are well-described by an equation with a common set of parameters. Implications from our findings for understanding DNA condensation in chromatin are discussed.
Collapse
Affiliation(s)
- Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | | | | | | | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
14
|
Korolev N, Vorontsova OV, Nordenskiöld L. Physicochemical analysis of electrostatic foundation for DNA-protein interactions in chromatin transformations. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2006; 95:23-49. [PMID: 17291569 DOI: 10.1016/j.pbiomolbio.2006.11.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/15/2006] [Indexed: 11/21/2022]
Abstract
Electrostatic interactions between DNA and DNA-packaging proteins, the histones, contribute substantially to stability of eukaryotic chromatin on all levels of its organization and are particularly important in formation of its elementary structural unit, the nucleosome. The release of DNA from the histones is an unavoidable stage in reading the DNA code. In the present review, we discuss the disassembly/assembly process of the nucleosome from a thermodynamic standpoint by considering it as a competition between an excess of polyanions (DNA and acidic/phosphorylated domains of the nuclear proteins) for binding to a limited pool of polycations (the histones). Results obtained in model systems are used to discuss conditions for the electrostatic component of DNA-protein interactions contributing to chromatin statics and dynamics. We propose a simple set of "electrostatic conditions" for the disassembly/assembly of nucleosome/chromatin and apply these to put forward a number of new interpretations for the observations reported in literature on chromatin. The approach sheds light on the functions of acidic domains in the nuclear proteins (nucleoplasmin and other histone chaperones, HMG proteins, the activation domains in transcriptional activators). It results in a putative explanation for the molecular mechanisms behind epigenetic regulation through histone acetylation, phosphorylation, and other alterations ("the language of covalent histone modification"). We also propose a new explanation for the role of phosphorylation of C-terminal domain of RNA polymerase II for regulation of the DNA transcription. Several other examples from literature on chromatin are discussed to support applicability of electrostatic rules for description of chromatin structure and dynamics.
Collapse
Affiliation(s)
- Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | | | | |
Collapse
|
15
|
Zinchenko AA, Luckel F, Yoshikawa K. Transcription of giant DNA complexed with cationic nanoparticles as a simple model of chromatin. Biophys J 2006; 92:1318-25. [PMID: 17142281 PMCID: PMC1783880 DOI: 10.1529/biophysj.106.094185] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We prepared complexes of giant double-stranded DNA with cationic nanoparticles of 10-40 nm in diameter as an artificial model of chromatin and characterized the properties of changes in their higher-order conformation. We measured the changes in transcriptional activity that accompanied the DNA conformational transitions. Complete inhibition was found at excess concentrations of nanoparticles. In contrast, at intermediate stages of DNA binding with nanoparticles, the transcription activity of DNA survived, and this strongly depended on the size of the nanoparticles. For large nanoparticles of 40 nm, a decrease in transcriptional activity can be caused by the addition of only a small amount of nanoparticles. On the other hand, there was almost no inhibition of DNA transcriptional activity with the addition of small nanoparticles (10 nm) until very high concentrations, even under conditions that induced DNA compaction as revealed by single-DNA observation. At higher concentrations of 10-nm nanoparticles, DNA transcription activity decreased abruptly until it was completely inhibited. These results are discussed in relation to the actual size of the histone core, together with the mechanism of switching of transcriptional activity in eukaryotic cells.
Collapse
Affiliation(s)
- Anatoly A Zinchenko
- Graduate School of Science, Department of Physics, Kyoto University, Sakyo-ku, Kyoto 608-8501, Japan.
| | | | | |
Collapse
|