1
|
Sequence-, structure-, and dynamics-based comparisons of structurally homologous CheY-like proteins. Proc Natl Acad Sci U S A 2017; 114:1578-1583. [PMID: 28143938 DOI: 10.1073/pnas.1621344114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We recently introduced a physically based approach to sequence comparison, the property factor method (PFM). In the present work, we apply the PFM approach to the study of a challenging set of sequences-the bacterial chemotaxis protein CheY, the N-terminal receiver domain of the nitrogen regulation protein NT-NtrC, and the sporulation response regulator Spo0F. These are all response regulators involved in signal transduction. Despite functional similarity and structural homology, they exhibit low sequence identity. PFM sequence comparison demonstrates a statistically significant qualitative difference between the sequence of CheY and those of the other two proteins that is not found using conventional alignment methods. This difference is shown to be consonant with structural characteristics, using distance matrix comparisons. We also demonstrate that residues participating strongly in native contacts during unfolding are distributed differently in CheY than in the other two proteins. The PFM result is also in accord with dynamic simulation results of several types. Molecular dynamics simulations of all three proteins were carried out at several temperatures, and it is shown that the dynamics of CheY are predicted to differ from those of NT-NtrC and Spo0F. The predicted dynamic properties of the three proteins are in good agreement with experimentally determined B factors and with fluctuations predicted by the Gaussian network model. We pinpoint the differences between the PFM and traditional sequence comparisons and discuss the informatic basis for the ability of the PFM approach to detect physical differences between these sequences that are not apparent from traditional alignment-based comparison.
Collapse
|
2
|
Kumar V, Sobhia ME. Molecular dynamics-based investigation of InhA substrate binding loop for diverse biological activity of direct InhA inhibitors. J Biomol Struct Dyn 2016; 34:2434-52. [DOI: 10.1080/07391102.2015.1118410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Vivek Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| | - M. Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar 160 062, Punjab, India
| |
Collapse
|
3
|
Free energy landscape of activation in a signalling protein at atomic resolution. Nat Commun 2015; 6:7284. [PMID: 26073309 PMCID: PMC4470301 DOI: 10.1038/ncomms8284] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 04/26/2015] [Indexed: 11/24/2022] Open
Abstract
The interconversion between inactive and active protein states, traditionally described by two static structures, is at the heart of signaling. However, how folded states interconvert is largely unknown due to the inability to experimentally observe transition pathways. Here we explore the free energy landscape of the bacterial response regulator NtrC by combining computation and NMR, and discover unexpected features underlying efficient signaling. We find that functional states are defined purely in kinetic and not structural terms. The need of a well-defined conformer, crucial to the active state, is absent in the inactive state, which comprises a heterogeneous collection of conformers. The transition between active and inactive states occurs through multiple pathways, facilitated by a number of nonnative transient hydrogen bonds, thus lowering the transition barrier through both entropic and enthalpic contributions. These findings may represent general features for functional conformational transitions within the folded state.
Collapse
|
4
|
A network of molecular switches controls the activation of the two-component response regulator NtrC. Nat Commun 2015; 6:7283. [DOI: 10.1038/ncomms8283] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 04/26/2015] [Indexed: 12/22/2022] Open
|
5
|
Banerjee R, Yan H, Cukier RI. Conformational Transition in Signal Transduction: Metastable States and Transition Pathways in the Activation of a Signaling Protein. J Phys Chem B 2015; 119:6591-602. [DOI: 10.1021/acs.jpcb.5b02582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Rahul Banerjee
- Department of Chemistry and ‡Department of
Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Honggao Yan
- Department of Chemistry and ‡Department of
Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Robert I. Cukier
- Department of Chemistry and ‡Department of
Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
6
|
Tripathi S, Portman JJ. Allostery and Folding of the N-terminal Receiver Domain of Protein NtrC. J Phys Chem B 2013; 117:13182-93. [DOI: 10.1021/jp403181p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Swarnendu Tripathi
- Department
of Physics, University of Houston, Houston, Texas 77204, United States
| | - John J. Portman
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
7
|
Jardin C, Sticht H. Identification of the Structural Features that Mediate Binding Specificity in the Recognition of STAT Proteins by Dual-Specificity Phosphatases. J Biomol Struct Dyn 2012; 29:777-92. [DOI: 10.1080/07391102.2012.10507413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Abstract
A statistical mechanical model of allosteric transitions in proteins is developed by extending the structure-based model of protein folding to cases of multiple native conformations. The partition function is calculated exactly within the model and the free-energy surface reflecting allostery is derived. This approach is applied to an example protein, the receiver domain of the bacterial enhancer-binding protein NtrC. The model predicts the large entropy associated with a combinatorial number of preexisting transition routes. This large entropy lowers the free-energy barrier of the allosteric transition, which explains the large structural fluctuation observed in the NMR data of NtrC. The global allosteric transformation of NtrC is explained by the shift of preexisting distribution of conformations upon phosphorylation, but the local structural adjustment around the phosphorylation site is explained by the complementary induced-fit mechanism. Structural disordering accompanied by fluctuating interactions specific to two allosteric conformations underlies a large number of routes of allosteric transition.
Collapse
|
9
|
Hills RD, Kathuria SV, Wallace LA, Day IJ, Brooks CL, Matthews CR. Topological frustration in beta alpha-repeat proteins: sequence diversity modulates the conserved folding mechanisms of alpha/beta/alpha sandwich proteins. J Mol Biol 2010; 398:332-50. [PMID: 20226790 DOI: 10.1016/j.jmb.2010.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 02/27/2010] [Accepted: 03/03/2010] [Indexed: 10/19/2022]
Abstract
The thermodynamic hypothesis of Anfinsen postulates that structures and stabilities of globular proteins are determined by their amino acid sequences. Chain topology, however, is known to influence the folding reaction, in that motifs with a preponderance of local interactions typically fold more rapidly than those with a larger fraction of nonlocal interactions. Together, the topology and sequence can modulate the energy landscape and influence the rate at which the protein folds to the native conformation. To explore the relationship of sequence and topology in the folding of beta alpha-repeat proteins, which are dominated by local interactions, we performed a combined experimental and simulation analysis on two members of the flavodoxin-like, alpha/beta/alpha sandwich fold. Spo0F and the N-terminal receiver domain of NtrC (NT-NtrC) have similar topologies but low sequence identity, enabling a test of the effects of sequence on folding. Experimental results demonstrated that both response-regulator proteins fold via parallel channels through highly structured submillisecond intermediates before accessing their cis prolyl peptide bond-containing native conformations. Global analysis of the experimental results preferentially places these intermediates off the productive folding pathway. Sequence-sensitive Gō-model simulations conclude that frustration in the folding in Spo0F, corresponding to the appearance of the off-pathway intermediate, reflects competition for intra-subdomain van der Waals contacts between its N- and C-terminal subdomains. The extent of transient, premature structure appears to correlate with the number of isoleucine, leucine, and valine (ILV) side chains that form a large sequence-local cluster involving the central beta-sheet and helices alpha2, alpha 3, and alpha 4. The failure to detect the off-pathway species in the simulations of NT-NtrC may reflect the reduced number of ILV side chains in its corresponding hydrophobic cluster. The location of the hydrophobic clusters in the structure may also be related to the differing functional properties of these response regulators. Comparison with the results of previous experimental and simulation analyses on the homologous CheY argues that prematurely folded unproductive intermediates are a common property of the beta alpha-repeat motif.
Collapse
Affiliation(s)
- Ronald D Hills
- Department of Molecular Biology and Kellogg School of Science and Technology, The Scripps Research Institute, 10550 North Torrey Pines Road TPC6, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
10
|
Gardino AK, Villali J, Kivenson A, Lei M, Liu CF, Steindel P, Eisenmesser EZ, Labeikovsky W, Wolf-Watz M, Clarkson MW, Kern D. Transient non-native hydrogen bonds promote activation of a signaling protein. Cell 2010; 139:1109-18. [PMID: 20005804 DOI: 10.1016/j.cell.2009.11.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/03/2009] [Accepted: 11/04/2009] [Indexed: 11/25/2022]
Abstract
Phosphorylation is a common mechanism for activating proteins within signaling pathways. Yet, the molecular transitions between the inactive and active conformational states are poorly understood. Here we quantitatively characterize the free-energy landscape of activation of a signaling protein, nitrogen regulatory protein C (NtrC), by connecting functional protein dynamics of phosphorylation-dependent activation to protein folding and show that only a rarely populated, pre-existing active conformation is energetically stabilized by phosphorylation. Using nuclear magnetic resonance (NMR) dynamics, we test an atomic scale pathway for the complex conformational transition, inferred from molecular dynamics simulations (Lei et al., 2009). The data show that the loss of native stabilizing contacts during activation is compensated by non-native transient atomic interactions during the transition. The results unravel atomistic details of native-state protein energy landscapes by expanding the knowledge about ground states to transition landscapes.
Collapse
Affiliation(s)
- Alexandra K Gardino
- Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02452, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Damjanović A, García-Moreno E B, Brooks BR. Self-guided Langevin dynamics study of regulatory interactions in NtrC. Proteins 2009; 76:1007-19. [PMID: 19384996 DOI: 10.1002/prot.22439] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Multiple self-guided Langevin dynamics (SGLD) simulations were performed to examine structural and dynamical properties of the receiver domain of nitrogen regulatory protein C (NtrC(r)). SGLD and MD simulations of the phosphorylated active form structure suggest a mostly stable but broad structural ensemble of this protein. The finite difference Poisson-Boltzmann calculations of the pK(a) values of the active site residues suggest an increase in the pK(a) of His-84 on phosphorylation of Asp-54. In SGLD simulations of the phosphorylated active form with charged His-84, the average position of the regulatory helix alpha4 is found closer to the starting structure than in simulations with the neutral His-84. To model the transition pathway, the phosphate group was removed from the simulations. After 7 ns of simulations, the regulatory helix alpha4 was found approximately halfway between positions in the NMR structures of the active and inactive forms. Removal of the phosphate group stimulated loss of helix alpha4, suggesting that the pathway of conformational transition may involve partial unfolding mechanism. The study illustrates the potential utility of the SGLD method in studies of the coupling between ligand binding and conformational transitions.
Collapse
Affiliation(s)
- Ana Damjanović
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
12
|
Lei M, Velos J, Gardino A, Kivenson A, Karplus M, Kern D. Segmented transition pathway of the signaling protein nitrogen regulatory protein C. J Mol Biol 2009; 392:823-36. [PMID: 19576227 DOI: 10.1016/j.jmb.2009.06.065] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/23/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
Abstract
Recent advances in experimental methods provide increasing evidence that proteins sample the conformational substates that are important for function in the absence of their ligands. An example is the receiver domain of nitrogen regulatory protein C, a member of the phosphorylation-mediated signaling family of "two-component systems." The receiver domain of nitrogen regulatory protein C samples both inactive conformation and the active conformation before phosphorylation. Here we determine a possible pathway of interconversion between the active state and the inactive state by targeted molecular dynamics simulations and quasi-harmonic analysis; these methods are used because the experimental conversion rate is in the high microsecond range, longer than those that are easily accessible to atomistic molecular dynamics simulations. The calculated pathway is found to be composed of four consecutive stages described by different progress variables. The lowest quasi-harmonic principal components from unbiased molecular dynamics simulations on the active state correspond to the first stage, but not to the subsequent stages of the transition. The targeted molecular dynamics pathway suggests that several transient nonnative hydrogen bonds may facilitate the transition.
Collapse
Affiliation(s)
- Ming Lei
- Department of Biochemistry, Brandeis University, Howard Hughes Medical Institute, Waltham, MA 02454, USA
| | | | | | | | | | | |
Collapse
|
13
|
Liu MS, Todd BD, Yao S, Feng ZP, Norton RS, Sadus RJ. Coarse-grained dynamics of the receiver domain of NtrC: fluctuations, correlations and implications for allosteric cooperativity. Proteins 2009; 73:218-27. [PMID: 18412261 DOI: 10.1002/prot.22056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Receiver domains are key molecular switches in bacterial signaling. Structural studies have shown that the receiver domain of the nitrogen regulatory protein C (NtrC) exists in a conformational equilibrium encompassing both inactive and active states, with phosphorylation of Asp54 allosterically shifting the equilibrium towards the active state. To analyze dynamical fluctuations and correlations in NtrC as it undergoes activation, we have applied a coarse-grained dynamics algorithm using elastic network models. Normal mode analysis reveals possible dynamical pathways for the transition of NtrC from the inactive state to the active state. The diagonalized correlation between the inactive and the active (phosphorylated) state shows that most correlated motions occur around the active site of Asp54 and in the region Thr82 to Tyr101. This indicates a coupled correlation of dynamics in the "Thr82-Tyr101" motion. With phosphorylation inducing significant flexibility changes around the active site and alpha3 and alpha4 helices, we find that this activation makes the active-site region and the loops of alpha3/beta4 and alpha4/beta5 more stable. This means that phosphorylation entropically favors the receiver domain in its active state, and the induced conformational changes occur in an allosteric manner. Analyses of the local flexibility and long-range correlated motion also suggest a dynamics criterion for determining the allosteric cooperativity of NtrC, and may be applicable to other proteins.
Collapse
Affiliation(s)
- Ming S Liu
- Centre for Molecular Simulation, Swinburne University of Technology, Hawthorn 3122, Australia.
| | | | | | | | | | | |
Collapse
|
14
|
Donaldson LW. The NMR structure of the Staphylococcus aureus response regulator VraR DNA binding domain reveals a dynamic relationship between it and its associated receiver domain. Biochemistry 2008; 47:3379-88. [PMID: 18293926 DOI: 10.1021/bi701844q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Staphylococcus aureus, a two-component signaling system consisting of the histidine kinase VraS and the response regulator VraR stimulates gene expression in response to antibiotics that inhibit cell wall formation. With respect to understanding the mechanism of the VraSR response and precise interaction of VraR at promoter sites, the structure of the VraR DNA binding domain (DBD) was determined using NMR methods. The DBD demonstrates a four-helix configuration that is shared with the NarL/FixJ family of response regulators and is monomeric in solution. Unobservable amide resonances in VraR NMR spectra coincided with a set of DNA backbone contact sites predicted from a model of a VraR-DNA complex. This observation suggests that a degree of conformational sampling is required to achieve a high-affinity interaction with DNA. On the basis of chemical shift differences and line broadening, an amino-terminal 3 10 helix and a portion of helix H4 identify a continuous surface that may link the DBD to the receiver domain. The full-length VraR protein thermally denatured with a single transition, suggesting that the receiver domain and DBD were integrated and not simply tethered. Of note, the DBD alone denatured at a temperature that was 21 degrees C higher than that of the full-length protein. Thus, the DBD appears to be thermodynamically and structurally sensitive to state of the receiver domain.
Collapse
Affiliation(s)
- Logan W Donaldson
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
15
|
Khalili M, Wales DJ. Pathways for conformational change in nitrogen regulatory protein C from discrete path sampling. J Phys Chem B 2008; 112:2456-65. [PMID: 18247595 DOI: 10.1021/jp076628e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pathways corresponding to the conformational change in nitrogen regulatory protein C are calculated using the CHARMM19 force field with an implicit solvation model. Our analysis employs the discrete path sampling approach to grow a database of local minima and transition states from the potential energy surface that contains kinetically relevant pathways. The pathways with the largest contribution to the phenomenological two-state rate constants are found to exhibit a number of structural features that agree with experimental observations. Further details of the calculated pathways for conformational change may therefore provide useful predictions of how this large-scale motion is achieved.
Collapse
Affiliation(s)
- Mey Khalili
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK
| | | |
Collapse
|