1
|
Zein HF, Alam I, Asanithi P, Sutthibutpong T. Molecular dynamics study on the effects of charged amino acid distribution under low pH condition to the unfolding of hen egg white lysozyme and formation of beta strands. PLoS One 2022; 17:e0249742. [PMID: 35324907 PMCID: PMC8946743 DOI: 10.1371/journal.pone.0249742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
Aggregation of unfolded or misfolded proteins into amyloid fibrils can cause various diseases in humans. However, the fibrils synthesized in vitro can be developed toward useful biomaterials under some physicochemical conditions. In this study, atomistic molecular dynamics simulations were performed to address the mechanism of beta-sheet formation of the unfolded hen egg-white lysozyme (HEWL) under a high temperature and low pH. Simulations of the protonated HEWL at pH 2 and the non-protonated HEWL at pH 7 were performed at the highly elevated temperature of 450 K to accelerate the unfolding, followed by the 333 K temperature to emulate some previous in vitro studies. The simulations showed that HEWL unfolded faster, and higher beta-strand contents were observed at pH 2. In addition, one of the simulation replicas at pH 2 showed that the beta-strand forming sequence was consistent with the 'K-peptide', proposed as the core region for amyloidosis in previous experimental studies. Beta-strand formation mechanisms at the earlier stage of amyloidosis were explained in terms of the radial distribution of the amino acids. The separation between groups of positively charged sidechains from the hydrophobic core corresponded to the clustering of the hydrophobic residues and beta-strand formation.
Collapse
Affiliation(s)
- Husnul Fuad Zein
- Nanoscience and Nanotechnology Program, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Thung Khru, Bangkok, Thailand
- Department of Physics, Theoretical and Computational Physics Group, KMUTT, Thung Khru, Bangkok, Thailand
- Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Thung Khru, Bangkok, Thailand
| | - Ibrar Alam
- Nanoscience and Nanotechnology Program, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Thung Khru, Bangkok, Thailand
| | - Piyapong Asanithi
- Nanoscience and Nanotechnology Program, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Thung Khru, Bangkok, Thailand
| | - Thana Sutthibutpong
- Nanoscience and Nanotechnology Program, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Thung Khru, Bangkok, Thailand
- Department of Physics, Theoretical and Computational Physics Group, KMUTT, Thung Khru, Bangkok, Thailand
- Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Thung Khru, Bangkok, Thailand
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Thung Khru, Bangkok, Thailand
| |
Collapse
|
2
|
Khan JM, Khan MS, Alsenaidy MA, Ahmed A, Sen P, Oves M, Al-Shabib NA, Khan RH. Sodium louroyl sarcosinate (sarkosyl) modulate amyloid fibril formation in hen egg white lysozyme (HEWL) at alkaline pH: a molecular insight study. J Biomol Struct Dyn 2017; 36:1550-1565. [DOI: 10.1080/07391102.2017.1329097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Javed Masood Khan
- Faculty of Food and Agricultural Sciences, Department of Food Science and Nutrition, King Saud University, 2460 Riyadh 11451, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Anwar Ahmed
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Priyankar Sen
- Centre for Bioseparation Technology, VIT University, Vellore 632014, India
| | - Mohammad Oves
- Center of Excellence in Enviromental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nasser Abdulatif Al-Shabib
- Faculty of Food and Agricultural Sciences, Department of Food Science and Nutrition, King Saud University, 2460 Riyadh 11451, Saudi Arabia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
3
|
Patel D, Kuyucak S. Computational study of aggregation mechanism in human lysozyme[D67H]. PLoS One 2017; 12:e0176886. [PMID: 28467454 PMCID: PMC5415109 DOI: 10.1371/journal.pone.0176886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/19/2017] [Indexed: 11/18/2022] Open
Abstract
Aggregation of proteins is an undesired phenomena that affects both human health and bioengineered products such as therapeutic proteins. Finding preventative measures could be facilitated by a molecular-level understanding of dimer formation, which is the first step in aggregation. Here we present a molecular dynamics (MD) study of dimer formation propensity in human lysozyme and its D67H variant. Because the latter protein aggregates while the former does not, they offer an ideal system for testing the feasibility of the proposed MD approach which comprises three stages: i) partially unfolded conformers involved in dimer formation are generated via high-temperature MD simulations, ii) potential dimer structures are searched using docking and refined with MD, iii) free energy calculations are performed to find the most stable dimer structure. Our results provide a detailed explanation for how a single mutation (D67H) turns human lysozyme from non-aggregating to an aggregating protein. Conversely, the proposed method can be used to identify the residues causing aggregation in a protein, which can be mutated to prevent it.
Collapse
Affiliation(s)
- Dharmeshkumar Patel
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Serdar Kuyucak
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
- * E-mail:
| |
Collapse
|
4
|
Fazili NA, Bhat IA, Bhat WF, Naeem A. Anti-fibrillation propensity of a flavonoid baicalein against the fibrils of hen egg white lysozyme: potential therapeutics for lysozyme amyloidosis. J Biomol Struct Dyn 2016; 34:2102-14. [DOI: 10.1080/07391102.2015.1108232] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Naveed Ahmad Fazili
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, , India
| | - Imtiyaz Ahmad Bhat
- Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh, , India
| | - Waseem Feeroze Bhat
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, , India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, , India
| |
Collapse
|
5
|
Zhao JH, Liu HL, Liu YF, Lin HY, Fang HW, Ho Y, Tsai WB. Molecular dynamics simulations to investigate the aggregation behaviors of the Abeta(17-42) oligomers. J Biomol Struct Dyn 2013; 26:481-90. [PMID: 19108587 DOI: 10.1080/07391102.2009.10507263] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The amyloid beta-peptides (Abetas) are the main protein components of amyloid deposits in Alzheimer's disease (AD). Detailed knowledge of the structure and assembly dynamics of Abeta is important for the development of properly targeted AD therapeutics. So far, the process of the monomeric Abeta assembling into oligomeric fibrils and the mechanism underlying the aggregation process remain unclear. In this study, several molecular dynamics simulations were conducted to investigate the aggregation behaviors of the Abeta(17-42) oligomers associated with various numbers of monomers (dimer, trimer, tetramer, and pentamer). Our results showed that the structural stability of the Abeta(17-42) oligomers increases with increasing the number of monomer. We further demonstrated that the native hydrophobic contacts are positive correlated with the beta-sheet contents, indicating that hydrophobic interaction plays an important role in maintaining the structural stability of the Abeta(17-42) oligomers, particularly for those associated with more monomers. Our results also showed that the stability of the C-terminal hydrophobic segment 2 (residues 30-42) is higher than that of the N-terminal hydrophobic segment 1 (residues 17-21), suggesting that hydrophobic segment 2 may act as the nucleation site for aggregation. We further identified that Met35 residue initiates the hydrophobic interactions and that the intermolecular contact pairs, Gly33-Gly33 and Gly37-Gly37, form a stable "molecular notch", which may mediate the packing of the beta-sheet involving many other hydrophobic residues during the early stage of amyloid-like fibril formation.
Collapse
Affiliation(s)
- Jian-Hua Zhao
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1 Sec. 3 ZhongXiao E. Rd., Taipei, Taiwan 10608
| | | | | | | | | | | | | |
Collapse
|
6
|
Raffaini G, Ganazzoli F. Protein adsorption on a hydrophobic surface: a molecular dynamics study of lysozyme on graphite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:5679-5689. [PMID: 20041676 DOI: 10.1021/la903769c] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Adsorption of human lysozyme on hydrophobic graphite is investigated through atomistic computer simulations with molecular mechanics (MM) and molecular dynamics (MD) techniques. The chosen strategy follows a simulation protocol proposed by the authors to model the initial and the final adsorption stage on a bare surface. Adopting an implicit solvent and considering 10 starting molecular orientations so that all the main sides of the protein can face the surface, we first carry out an energy minimization to investigate the initial adsorption stage, and then long MD runs of selected arrangements to follow the surface spreading of the protein maximizing its adsorption strength. The results are discussed in terms of the kinetics of surface spreading, the interaction energy, and the molecular size, considering both the footprint and the final thickness of the adsorbed protein. The structural implications of the final adsorption geometry for surface aggregation and nanoscale structural organization are also pointed out. Further MD runs are carried out in explicit water for the native structure and the most stable adsorption state to assess the local stability of the geometry obtained in implicit solvent, and to calculate the statistical distribution of the water molecules around the whole lysozyme and its backbone.
Collapse
Affiliation(s)
- Giuseppina Raffaini
- Dipartimento di Chimica, Materiali e Ingegneria Chimica G. Natta, Politecnico di Milano, via L. Mancinelli 7, 20131 Milano, Italy.
| | | |
Collapse
|
7
|
Fang PS, Zhao JH, Liu HL, Liu KT, Chen JT, Tsai WB, Lin HY, Fang HW, Ho Y. Molecular dynamics simulations to investigate the relationship between the structural stability and amyloidogenesis of the wild-type and N-terminal hexapeptide deletion ΔN6 β2-microglobulin. MOLECULAR SIMULATION 2009. [DOI: 10.1080/08927020902818005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Lin YM, Liu HL, Zhao JH, Huang CH, Fang HW, Ho Y, Chen WY. Molecular dynamics simulations to investigate the domain swapping mechanism of human cystatin C. Biotechnol Prog 2007; 23:577-84. [PMID: 17439156 DOI: 10.1021/bp060380d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human cystatin C (HCC), one of the amyloidgenic proteins, has been proved to form a dimeric structure via a domain swapping process and then cause amyloid deposits in the brains of patients suffering from Alzheimer's disease. HCC monomer consists of a core with a five-stranded antiparallel beta-sheet (beta region) wrapped around a central helix. The connectivity of these secondary structures is: (N)-beta1-alpha-beta2-L1-beta3-AS-beta4-L2-beta5-(C). In this study, various molecular dynamics simulations were conducted to investigate the conformational changes of the monomeric HCC at different temperatures (300 and 500 K) and pH levels (2, 4, and 7) to gain insight into the domain swapping mechanism. The results show that high temperature (500 K) and low pH (pH 2) will trigger the domain swapping process of HCC. We further proposed that the domain swapping mechanism of HCC follows four steps: (1) the alpha-helix moves away from the beta region; (2) the contacts between beta2 and beta3-AS disappear; (3) the beta2-L1-beta3 hairpin unfolds following the so-called "zip-up" mechanism; and finally (4) the HCC dimer is formed. Our study shows that high temperature can accelerate the unfolding of HCC and the departure of the alpha-helix from the beta-region, especially at low pH value. This is attributed to the fact that that low pH results in the protonation of the side chains of Asp, Glu, and His residues, which further disrupts the following four salt-bridge interactions stabilizing the alpha-beta interface of the native structure: Asp15-Arg53 (beta1-beta2), Glu21/20-Lys54 (helix-beta2), Asp40-Arg70 (helix-AS), and His43-Asp81 (beta2-AS).
Collapse
Affiliation(s)
- Yuan-Min Lin
- Department of Chemical Engineering and Biotechnology and Graduate Institute of Biotechnology, National Taipei University of Technology, 1 Sec. 3 ZhongXiao E. Rd., Taipei, Taiwan 10608
| | | | | | | | | | | | | |
Collapse
|