1
|
Abdelaziz AA, Abo-Kamar AM, Ashour AE, Shaldam MA, Elekhnawy E. Unveiling the antibacterial action of ambroxol against Staphylococcus aureus bacteria: in vitro, in vivo, and in silico investigation. BMC Microbiol 2024; 24:507. [PMID: 39614163 DOI: 10.1186/s12866-024-03666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
It is critical to find novel therapeutic approaches owing to the dissemination of multidrug resistance (MDR) in pathogenic bacteria, particularly Staphylococcus aureus. FDA-drug repurposing is an important therapeutic tactic to fight MDR bacteria. Here, we inspected the antibacterial activity of ambroxol against clinical MDR S. aureus isolates. Using the broth microdilution method, ambroxol revealed minimum inhibitory concentrations (MICs) of 0.75 to 1.5 mg/mL. Also, it revealed antibiofilm action on 42.17% of the isolates by crystal violet assay. A scanning electron microscope was employed to study the antibiofilm action of ambroxol. It revealed that the association between the cells was interrupted by ambroxol, and the biofilm construction was devastated. Moreover, qRT-PCR was utilized to elucidate the consequence of ambroxol on the gene expression of efflux and biofilm. Remarkably, ambroxol has downregulated the expression of cna, fnb A, ica, nor A, nor B genes. Ambroxol's in vivo antibacterial action was investigated using S. aureus infected burn infection. Interestingly, ambroxol has improved the histological features of the skin tissues, significantly diminished the bacterial burden, and increased the wound healing percentage. Also, it revealed a significant reduction in the immunohistochemical staining of tumor necrosis factor-alpha. Finally, the in silico investigations were performed to elucidate the potential of ambroxol on five possible targets of S. aureus. Ambroxol showed good affinities on the five investigated targets in S. aureus, with CrtM being the highest, proposing its probable role in the mechanisms for ambroxol's action on S. aureus.
Collapse
Affiliation(s)
- Ahmed A Abdelaziz
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Amal M Abo-Kamar
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Alaa E Ashour
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
2
|
Oluwafemi KA, Jimoh RB, Omoboyowa DA, Olonisakin A, Adeforiti AF, Iqbal N. Investigating the effect of 1, 2-Dibenzoylhydrazine on Staphylococcus aureus using integrated computational approaches. In Silico Pharmacol 2024; 12:102. [PMID: 39524456 PMCID: PMC11549268 DOI: 10.1007/s40203-024-00278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Staphylococcus aureus, a notorious member of the ESKAPE pathogens, poses significant public health challenges due to its virulence and multidrug-resistant nature, particularly in methicillin-resistant S. aureus (MRSA) strains. With the increasing threat of antibiotic resistance, there is an urgent need to develop novel antibiotic agents. This study therefore aims to explore the antibacterial potential of 1,2-dibenzoylhydrazine (DBH) as a scaffold against S. aureus drug target enzymes, using integrated computational approaches. The study utilized molecular docking, lead optimization, and structure-based virtual screening techniques to evaluate the binding affinities of DBH and its derivatives against various S. aureus enzymes. Prime/MM-GBSA calculations were performed to validate the binding affinities obtained, and molecular dynamics (MD) simulations were conducted to assess the stability of the DBHs-enzyme complexes. Results indicated that, out of twenty enzymes from S. aureus examined against DBH, carotenoid dehydrosqualene synthase was predicted as a suitable target enzyme for DBH, showing a binding affinity of -8.027 kcal/mol. A lead optimization operation of the compound generated 27 DBH derivatives out of which four exhibited enhanced binding affinities compared to both DBH and a standard antibiotic, ofloxacin. The QSAR model predicted that, DBH and molecule_D_1 have higher PIC50 of 4.779 µM compared with the standard drug (ofloxacin = 4.678 µM). MD simulations confirmed the stability of the top-scoring derivatives within the enzyme's binding pocket, with RMSD and RMSF analyses supporting their potential as inhibitors of the enzyme. In conclusion, this study has predicted the effect of DBH derivatives on S. aureus based on their in silico inhibitory capacity against the carotenoid dehydrosqualene synthase from the organism. Future work will seek to experimentally validate these findings against the suggested enzyme. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00278-1.
Collapse
Affiliation(s)
- Kola A. Oluwafemi
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Rashidat B. Jimoh
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Damilola A. Omoboyowa
- Phyto-medicine and Computational Biology Laboratory, Adekunle Ajasin University, Akungba-Akoko, Nigeria
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Adebisi Olonisakin
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Anthony F. Adeforiti
- Department of Chemical Sciences, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Naveed Iqbal
- Department of BioinformaticsInstitute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
3
|
Bhogal I, Pankaj V, Provaznik V, Roy S. In silico investigation of cholesterol-lowering drugs to find potential inhibitors of dehydrosqualene synthase in Staphylococcus aureus. 3 Biotech 2024; 14:39. [PMID: 38261920 PMCID: PMC10794677 DOI: 10.1007/s13205-023-03862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 11/21/2023] [Indexed: 01/25/2024] Open
Abstract
Staphylococcus aureus is a lethal pathogen that can cause various bacterial infections. This study targets the CrtM enzyme of S. aureus, which is crucial for synthesizing golden carotenoid pigment: staphyloxanthin, which provides anti-oxidant activity to this bacterium for combating antimicrobial resistance inside the host cell. The present investigation quests for human SQS inhibitors against the CrtM enzyme by employing structure-based drug design approaches including induced fit docking (IFD), molecular dynamic (MD) simulations, and binding free energy calculations. Depending upon the docking scores, two compounds, lapaquistat acetate and squalestatin analog 20, were identified as the lead molecules exhibit higher affinity toward the CrtM enzyme. These docked complexes were further subjected to 100 ns MD simulation and several thermodynamics parameters were analyzed. Further, the binding free energies (ΔG) were calculated for each simulated protein-ligand complex to study the stability of molecular contacts using the MM-GBSA approach. Pre-ADMET analysis was conducted for systematic evaluation of physicochemical and medicinal chemistry properties of these compounds. The above study suggested that lapaquistat acetate and squalestatin analog 20 can be selected as potential lead candidates with promising binding affinity for the S. aureus CrtM enzyme. This study might provide insights into the discovery of potential drug candidates for S. aureus with a high therapeutic index. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03862-y.
Collapse
Affiliation(s)
- Inderjeet Bhogal
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, 616 00 Czech Republic
| | - Vaishali Pankaj
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, 616 00 Czech Republic
| | - Valentine Provaznik
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, 616 00 Czech Republic
| | - Sudeep Roy
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, 616 00 Czech Republic
| |
Collapse
|
4
|
Zhong Y, He X, Tao W, Feng J, Zhang R, Gong H, Tang Z, Huang C, He Y. 2,4-Diacetylphloroglucinol (DAPG) derivatives rapidly eradicate methicillin-resistant staphylococcus aureus without resistance development by disrupting membrane. Eur J Med Chem 2023; 261:115823. [PMID: 37839345 DOI: 10.1016/j.ejmech.2023.115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes severe public health challenges throughout the world, and the multi-drug resistance (MDR) of MRSA to antibiotics necessitates the development of more effective antibiotics. Natural 2,4-diacetylphloroglucinol (DAPG), produced by Pseudomonas, displays moderate inhibitory activity against MRSA. A series of DAPG derivatives was synthesized and evaluated for their antibacterial activities, and some showed excellent activities (MRSA MIC = 0.5-2 μg/mL). Among these derivatives, 7g demonstrated strong antibacterial activity without resistance development over two months. Mechanistic studies suggest that 7g asserted its activity by targeting bacterial cell membranes. In addition, 7g exhibited significant synergistic antibacterial effects with oxacillin both in vitro and in vivo, with a tendency to eradicate MRSA biofilms. 7g is a promising lead for the treatment of MRSA.
Collapse
Affiliation(s)
- Yifan Zhong
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China
| | - Xiaoli He
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, PR China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, PR China
| | - Wenlan Tao
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, PR China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, PR China
| | - Jizhou Feng
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China
| | - Ruixue Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China
| | - Hongzhi Gong
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China
| | - Ziyi Tang
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, PR China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, PR China
| | - Chao Huang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China.
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, PR China; BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
5
|
Facile synthesis, pharmacological and In silico analysis of succinimide derivatives: An approach towards drug discovery. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Soda AK, Kurva S, Singh K, Veeragoni D, Misra S, Murahari M, Madabhushi S. Synthesis and Pharmacological Evaluation of Hexafluoro Functionalized Quinolone Derivatives as Potential Chemotherapeutic Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202201366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anil Kumar Soda
- Department of Fluoro-Agrochemicals CSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Srinivas Kurva
- Department of Fluoro-Agrochemicals CSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Kamini Singh
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
- Applied Biology CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Dileepkumar Veeragoni
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
- Applied Biology CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Sunil Misra
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
- Applied Biology CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Manikanta Murahari
- Medicinal Chemistry Research Division K L College of pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram Andhra Pradesh India
| | - Sridhar Madabhushi
- Department of Fluoro-Agrochemicals CSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
7
|
Elmesseri RA, Saleh SE, Elsherif HM, Yahia IS, Aboshanab KM. Staphyloxanthin as a Potential Novel Target for Deciphering Promising Anti- Staphylococcus aureus Agents. Antibiotics (Basel) 2022; 11:298. [PMID: 35326762 PMCID: PMC8944557 DOI: 10.3390/antibiotics11030298] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 01/16/2023] Open
Abstract
Staphylococcus aureus is a fatal Gram-positive pathogen threatening numerous cases of hospital-admitted patients worldwide. The emerging resistance of the pathogen to several antimicrobial agents has pressurized research to propose new strategies for combating antimicrobial resistance. Novel strategies include targeting the virulence factors of S. aureus. One of the most prominent virulence factors of S. aureus is its eponymous antioxidant pigment staphyloxanthin (STX), which is an auspicious target for anti-virulence therapy. This review provides an updated outline on STX and multiple strategies to attenuate this virulence factor. The approaches discussed in this article focus on bioprospective and chemically synthesized inhibitors of STX, inter-species communication and genetic manipulation. Various inhibitor molecules were found to exhibit appreciable inhibitory effect against STX and hence would be able to serve as potential anti-virulence agents for clinical use.
Collapse
Affiliation(s)
- Rana A. Elmesseri
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt; (R.A.E.); (H.M.E.)
| | - Sarra E. Saleh
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University (ASU), Cairo 11566, Egypt;
| | - Heba M. Elsherif
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt; (R.A.E.); (H.M.E.)
| | - Ibrahim S. Yahia
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61441, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Semiconductor Laboratory, Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University (ASU), Cairo 11566, Egypt;
| |
Collapse
|
8
|
Hesperidin inhibits biofilm formation, virulence and staphyloxanthin synthesis in methicillin resistant Staphylococcus aureus by targeting SarA and CrtM: an in vitro and in silico approach. World J Microbiol Biotechnol 2022; 38:44. [PMID: 35064842 DOI: 10.1007/s11274-022-03232-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/07/2022] [Indexed: 01/20/2023]
Abstract
Methicillin resistant Staphylococcus aureus is considered multidrug resistant bacterium due to developing biofilm formation associated with antimicrobial resistance mechanisms. Therefore, inhibition of biofilm formation is an alternative therapeutic action to control MRSA infections. The present study revealed the non-antibacterial biofilm inhibitory potential of hesperidin against ATCC strain and clinical isolates of S. aureus. Hesperidin is a flavanone glycoside commonly found in citrus fruit. Hesperidin has been shown to exhibits numerous pharmacological activities. The present study aimed to evaluate the antibiofilm and antivirulence potential of hesperidin against MRSA. Results showed that hesperidin treatment significantly impedes lipase, hemolysin, autolysin, autoaggregation and staphyloxanthin production. Reductions of staphyloxanthin production possibly increase the MRSA susceptibility rate to H2O2 oxidative stress condition. In gene expression study revealed that hesperidin treatment downregulated the biofilm-associated gene (sarA), polysaccharide intracellular adhesion gene (icaA and icaD), autolysin (altA), fibronectin-binding protein (fnbA and fnbB) and staphyloxanthin production (crtM). Molecular docking analysis predicted the ability of hesperidin to interact with SarA and CrtM proteins involved in biofilm formation and staphyloxanthin production in MRSA.
Collapse
|
9
|
Synthesis, spectroscopic characterization, DFT, molecular docking and in vitro antibacterial potential of novel quinoline derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Abstract
Many S. aureus strains produce membrane-associated carotenoid pigments, advantageous secondary metabolites that can alter membrane fluidity, resistance to antimicrobial peptides (AMPs) and act as antioxidants, properties that can impact resistance against aspects of the host innate immune system. Several studies have reported connections between mutations in both regulatory (i.e., alternative sigma factor B) and metabolic (purine biosynthesis, oxidative phosphorylation) genes, and noticeable differences in carotenoid pigmentation. This chapter outlines a simple protocol to quantify cellular pigments using a methanol extraction method.
Collapse
Affiliation(s)
- Leia E Sullivan
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL, USA
| | - Kelly C Rice
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Staphyloxanthin inhibitory potential of thymol impairs antioxidant fitness, enhances neutrophil mediated killing and alters membrane fluidity of methicillin resistant Staphylococcus aureus. Biomed Pharmacother 2021; 141:111933. [PMID: 34328107 DOI: 10.1016/j.biopha.2021.111933] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/20/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus is a leading pathogen responsible for mild to severe invasive infections in humans. Especially, methicillin resistant Staphylococcus aureus (MRSA) is prevalent in hospital and community associated infections. Staphyloxanthin is a golden yellow color eponymous pigment produced by S. aureus and provides resistance to reactive oxygen species (ROS) and host neutrophil-based killing. In addition, this membrane pigment contributes to membrane rigidity and helps MRSA to survive under stress conditions. Targeting virulence of pathogen without exerting selection pressure is the recent approach to fight bacterial infections without developing drug resistance. The present study for the first time evaluated the staphyloxanthin inhibitory potential of thymol against MRSA. Qualitative and quantitative analyses demonstrated 90% of staphyloxanthin inhibition at 100 µg/mL concentration of thymol without alteration in growth. Molecular docking analysis and in vitro measurement of metabolic intermediates of staphyloxanthin revealed that thymol could possibly interact with CrtM to inhibit staphyloxanthin. Absorbance and infra red spectra further validated the inhibition of staphyloxanthin by thymol. In addition, thymol treatment significantly reduced the resistance of MRSA to ROS and neutrophil-based killing as exhibited by oxidant susceptibility assays and ex vivo innate immune clearance assay using human whole blood and neutrophils. Further, reduction in staphyloxanthin by thymol treatment increased the membrane fluidity and made MRSA cells more susceptible to membrane targeting antibiotic polymyxin B. Especially, thymol was found to be non-cytotoxic to human peripheral blood mononuclear cells. Our study validated the antivirulence potential of thymol against MRSA by inhibiting staphyloxanthin and suggests the prospective therapeutic role of thymol to combat MRSA infections.
Collapse
|
12
|
K R, Kakkassery JT, Raphael VP, Johnson R, K VT. In vitro antibacterial and in silico docking studies of two Schiff bases on Staphylococcus aureus and its target proteins. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00225-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Schiff base compounds have extensive applications in various fields such as analytical, inorganic, organic, and biological fields. They have excellent pharmacology application prospects in the modern era and are widely used in the pharmaceutical industry. In the present work in vitro antibacterial and in silico docking studies of two Schiff base compounds 2,2’-(5,5-dimethylcyclohexane-1,3-diylidene)bis(azan-1-yl-1-ylidene)diphenol (DmChDp) and N,N’-(5,5-dimethylcyclohexane-1,3-diylidene)dianiline (DmChDa) were carried out against the bacterial strain Staphylococcus aureus and its target proteins.
Results
The tests proved that the ligands have potential antibacterial activity. In the computational analysis, the drug-like properties of the compounds were first pre-filtered using the Lipinski rule of five. Then, molecular docking study was conducted using the AutoDock 4.2 program, to establish the mechanism by which the molecules inhibit the growth of S. aureus. For this purpose, 6 different target proteins (PDB ID: 1T2P, 3U2D, 2W9S, 1N67, 2ZCO, and 4H8E) of S. aureus were selected. Both the Schiff bases showed a good binding affinity with the target protein dihydrofolate reductase enzyme (PDB ID: 2W9S) but in different sites. Maximum binding energies of about − 10.3 and − 10.2 kcal/mol were observed when DmChDp and DmChDa were docked with 2W9S.
Conclusion
Schiff base compounds DmChDp and DmChDa have appreciable growth-inhibitory power against S. aureus, which can be attributed to the deactivation of the enzyme, dihydrofolate reductase.
Collapse
|
13
|
Saminathan M, Jayakumar MR, Chandrasekaran R, Raja R, George J, Alagusundaram P. Synthesis, spectral, crystal structure, drug‐likeness, in silico, and in vitro biological screening of halogen [Cl, Br] substituted
N
‐phenylbenzo
[
g
]indazole derivatives as antimicrobial agents. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Murugavel Saminathan
- Department of Physics Thanthai Periyar Government Institute of Technology Vellore India
| | - Mohan Raj Jayakumar
- Department of Physics Thanthai Periyar Government Institute of Technology Vellore India
| | | | - Ranganathan Raja
- Department of Chemistry PRIST Deemed to be University, Madurai Campus Sivagangai India
| | - Jaabil George
- Department of Organic Chemistry, School of Chemistry Madurai Kamaraj University Madurai India
| | | |
Collapse
|
14
|
Selvaraj A, Valliammai A, Muthuramalingam P, Priya A, Suba M, Ramesh M, Karutha Pandian S. Carvacrol Targets SarA and CrtM of Methicillin-Resistant Staphylococcus aureus to Mitigate Biofilm Formation and Staphyloxanthin Synthesis: An In Vitro and In Vivo Approach. ACS OMEGA 2020; 5:31100-31114. [PMID: 33324819 PMCID: PMC7726784 DOI: 10.1021/acsomega.0c04252] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/06/2020] [Indexed: 05/25/2023]
Abstract
Carvacrol is an essential oil traditionally used in culinary processes as spice due to its aromatic nature and also known for various biological activities. In the present study, the antivirulence efficacy of carvacrol against methicillin-resistant Staphylococcus aureus (MRSA) is explored. MRSA is an opportunistic pathogen capable of causing various superficial and systemic infections in humans. Biofilm formation and virulence factors of MRSA are responsible for its pathogenesis and resistance. Hence, the aim of this study was to explore the antibiofilm and antivirulence efficacy of carvacrol against MRSA. Carvacrol at 75 μg/mL inhibited MRSA biofilm by 93%, and it also decreased the biofilm formation on polystyrene and glass surfaces. Further, microscopic analyses revealed the reduction in microcolony formation and collapsed structure of biofilm upon carvacrol treatment. The growth curve analysis and the Alamar blue assay showed the nonfatal effect of carvacrol on MRSA. Further, carvacrol significantly reduced the production of MRSA biofilm-associated slime and extracellular polysaccharide. In addition, carvacrol strongly inhibited the antioxidant pigment staphyloxanthin and its intermediates' synthesis in MRSA. Inhibition of biofilm and staphyloxanthin by carvacrol enhanced the susceptibility of MRSA to oxidants and healthy human blood. Quantitative polymerase chain reaction (qPCR) analysis unveiled the downregulation of sarA-mediated biofilm gene expression and staphyloxanthin-associated crtM gene expression. The sarA-dependent antibiofilm potential of carvacrol was validated using S. aureus Newman wild-type and isogenic ΔsarA strains. In silico molecular docking analysis showed the high binding efficacy of carvacrol with staphylococcal accessory regulator A (SarA) and 4,4'-diapophytoene synthase (CrtM) when compared to positive controls. Furthermore, the in vivo efficacy of carvacrol against MRSA infection was demonstrated using the model organism Galleria mellonella. The results revealed the nontoxic nature of carvacrol to the larvae and the rescuing potential of carvacrol against MRSA infection. Finally, the current study reveals the potential of carvacrol in inhibiting the biofilm formation and staphyloxanthin synthesis of MRSA by targeting the global regulator SarA and a novel antivirulence target CrtM.
Collapse
Affiliation(s)
- Anthonymuthu Selvaraj
- Department
of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Alaguvel Valliammai
- Department
of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Pandiyan Muthuramalingam
- Department
of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
- Department
of Systems Biology, Science Research Centre, Yonsei University, Seoul 03722, South Korea
| | - Arumugam Priya
- Department
of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Manokaran Suba
- Department
of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Manikandan Ramesh
- Department
of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | | |
Collapse
|
15
|
Shehabeldine AM, Ashour RM, Okba MM, Saber FR. Callistemon citrinus bioactive metabolites as new inhibitors of methicillin-resistant Staphylococcus aureus biofilm formation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112669. [PMID: 32087316 DOI: 10.1016/j.jep.2020.112669] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/17/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The development of new inhibitors of bacterial virulence factors from natural origin has recently received significant attention. Callistemon citrinus Skeels is an important plant of great medicinal value. Its antimicrobial activity is well documented. Although several compounds were isolated from this plant, the actual bioactive compounds responsible for its antimicrobial activity are still unrevealed. AIM OF THE STUDY To evaluate the effect of C. citrinus crude extract and isolated compounds on methicillin-resistant and sensitive Staphylococcus aureus. MATERIALS AND METHODS The methylene chloride-methanol extract (MME) of C. citrinus leaves was prepared by Soxhlet apparatus. Biologically guided fractionation of MME was accomplished using several normal and reversed phase silica gel columns. The potency of MME and its isolated compounds against methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) was evaluated. In addition, the mechanism of resistance was studied using three virulence factors; antibiofilm activity, inhibition of staphyloxanthin biosynthesis and effect on acid tolerance. Ultrastructural changes in MRSA and MSSA were observed by TEM to understand mode of action of these compounds. RESULTS Pulverulentone A (C1), 8- desmethyl eucalyptin (C2) and eucalyptin (C3) were isolated from the most bioactive fraction of MME. Confocal scanning laser microscopy images revealed that C. citrinus isolated compounds destroyed the intact architecture of biofilm, thickness and reduced its biomass. Pulverulentone A (C1) showed the most potent anti-biofilm activity up to 71% and 62.3% against MRSA and MSSA, respectively. It also exhibited the highest inhibition of staphyloxanthin biosynthesis of MRSA and MSSA by 55.6% and 54.5%, respectively. The bacterial cell membrane was compromised, losing its integrity and releasing important cellular constituents when exposed to C1-C3 CONCLUSIONS: C. citrinus phenolics and acylphloroglucinols may serve as potential source of plant-based antibacterials and thus could be implicated to control MRSA biofilm formation.
Collapse
Affiliation(s)
- Amr M Shehabeldine
- Department of Botany and Microbiology, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Rehab M Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el-Aini street, Cairo, 11562, Egypt.
| | - Mona M Okba
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el-Aini street, Cairo, 11562, Egypt.
| | - Fatema R Saber
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el-Aini street, Cairo, 11562, Egypt.
| |
Collapse
|
16
|
Singu PS, Kanugala S, Dhawale SA, Kumar CG, Kumbhare RM. Synthesis and Pharmacological Evaluation of Some Amide Functionalized 1
H
‐Benzo[
d
]imidazole‐2‐thiol Derivatives as Antimicrobial Agents. ChemistrySelect 2020. [DOI: 10.1002/slct.201903380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Padma S. Singu
- Department of Fluoro-AgrochemicalsCSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad India
| | - Sirisha Kanugala
- Department of Organic Synthesis and Process ChemistryCSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad 500007, Telangana India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad India
| | - Sachin A. Dhawale
- Department of Pharmaceutical ChemistryY. B. Chavan College of PharmacyDr. Rafiq Zakaria Campus Aurangabad- 431001 India
| | - C. Ganesh Kumar
- Department of Organic Synthesis and Process ChemistryCSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad 500007, Telangana India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad India
| | - Ravindra M. Kumbhare
- Department of Fluoro-AgrochemicalsCSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad India
| |
Collapse
|
17
|
Gupta K, Singh SP, Manhar AK, Saikia D, Namsa ND, Konwar BK, Mandal M. Inhibition of Staphylococcus aureus and Pseudomonas aeruginosa Biofilm and Virulence by Active Fraction of Syzygium cumini (L.) Skeels Leaf Extract: In-Vitro and In Silico Studies. Indian J Microbiol 2018; 59:13-21. [PMID: 30728626 DOI: 10.1007/s12088-018-0770-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022] Open
Abstract
Syzygium cumini L. Skeels (Myretacae family) is a native plant of the Indian subcontinent which has wide socio-economical importance and is well known for its ant diabetic activity. The present study aimed to investigate the antibiofilm activity of purified fraction (EA) from S. cumini leaf extract against P. aeruginosa and S. aureus. The EA did not show any effect on growth of P. aeruginosa and S. aureus at the concentration of 900 µg/ml. At this concentration EA showed biofilm inhibition up to 86 ± 1.19% (***P < 0.0001) and 86.40 ± 1.19% (***P < 0.0001) in P. aeruginosa and S. aureus respectively. SEM examination also confirmed the reduction in biofilm formation. Further EA also disrupted some virulence phenotypes in P. aeruginosa and S. aureus. Bioactive compounds detected by GC-MS showed their possible molecular interaction with RhlG/NADP active-site complex (PDB ID: 2B4Q), LasR-TP4 complex (PDB ID: 3JPU) and Pseudaminidase (PDB ID: 2W38) from P. aeruginosa. The in vitro biofilm inhibition, virulence factor inhibition and the mode of interaction of bioactive components in Syzygium cumini with QS proteins of bacteria reported in this study might be an affordable and effective alternative method of controlling quorum sensing/biofilm-associated infections.
Collapse
Affiliation(s)
- Kuldeep Gupta
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, Assam 784028 India
| | - Salam Pradeep Singh
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, Assam 784028 India
| | - Ajay Kumar Manhar
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, Assam 784028 India
| | - Devabrata Saikia
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, Assam 784028 India
| | - Nima D Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, Assam 784028 India
| | - Bolin Kumar Konwar
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, Assam 784028 India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, Assam 784028 India
| |
Collapse
|
18
|
Rubini D, Farisa Banu S, Veda Hari BN, Ramya Devi D, Gowrishankar S, Karutha Pandian S, Nithyanand P. Chitosan extracted from marine biowaste mitigates staphyloxanthin production and biofilms of Methicillin- resistant Staphylococcus aureus. Food Chem Toxicol 2018; 118:733-744. [PMID: 29908268 DOI: 10.1016/j.fct.2018.06.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 01/24/2023]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus is a major cause of biofilm-associated and indwelling device related infections. The present study explores the anti-virulent and antibiofilm potency of chitosan extracted from the shells of the marine crab Portunus sanguinolentus against Methicillin Resistant Staphylococcus aureus (MRSA). The chemical characterization results revealed that the extracted chitosan (EC) has structural analogy to that of a commercial chitosan (CC). The extracted chitosan was found to be effective in reducing the staphyloxanthin pigment, a characteristic virulence feature of MRSA that promotes resistance to reactive oxygen species. Furthermore, Confocal laser scanning microscope (CLSM) revealed that EC exhibited a phenomenal dose dependent antibiofilm efficacy against mature biofilms of the standard as well as clinical MRSA strains and Scanning Electron Microscopy (SEM) confirmed EC had a higher efficacy in disrupting the thick Exopolysaccharide (EPS) layer than CC. Additionally, EC and CC did not have any cytotoxic effects when tested on lung epithelial cell lines. Thus, the study exemplifies the anti-virulent properties of a marine bioresource which is till date discarded as a biowaste.
Collapse
Affiliation(s)
- Durairajan Rubini
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Sanaulla Farisa Banu
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - B Narayanan Veda Hari
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India.
| | - Durai Ramya Devi
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Shanmugaraj Gowrishankar
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 004, Tamil Nadu, India
| | | | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India.
| |
Collapse
|
19
|
Barretto DA, Vootla SK. In Vitro Anticancer Activity of Staphyloxanthin Pigment Extracted from Staphylococcus gallinarum KX912244, a Gut Microbe of Bombyx mori. Indian J Microbiol 2018; 58:146-158. [PMID: 29651173 DOI: 10.1007/s12088-018-0718-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/08/2018] [Indexed: 01/27/2023] Open
Abstract
The present study reports the in vitro biological nature of the pigment produced by Staphylococcus gallinarum KX912244, isolated as the gut microflora bacterium of the insect Bombyx mori. The purified pigment was characterized as Staphyloxanthin based on bio-physical characterization techniques like Fourier transform infrared spectroscopy, high performance liquid chromatography, Proton nuclear magnetic resonance spectroscopy (1H NMR), Liquid chromatography-Mass spectroscopy and Gas chromatography-Mass spectroscopy. The Staphyloxanthin pigment presented considerable biological properties including in vitro antimicrobial activity against pathogens Staphylococcus aureus, Escherichia coli and Candida albicans; in vitro antioxidant activity by % DPPH free radical scavenging activity showing IC50 value of 54.22 µg/mL; DNA damage protection activity against reactive oxygen species and anticancer activity evaluated by cytotoxicity assay against 4 different cancer cell lines like the Dalton's lymphoma ascites with IC50 value 6.20 ± 0.02 µg/mL, Ehrlich ascites carcinoma having IC50 value 6.48 ± 0.15 µg/mL, Adenocarcinomic human alveolar basal epithelial cells (A549 Lung carcinoma) bearing IC50 value 7.23 ± 0.11 µg/mL and Mus mucus skin melanoma (B16F10) showing IC50 value 6.58 ± 0.38 µg/mL and less cytotoxicity towards non-cancerous human fibroblast cell lines (NIH3T3) with IC50 value of 52.24 µg/mL. The present study results suggest that Staphyloxanthin acts as a potential therapeutic agent especially due to its anticancer property.
Collapse
Affiliation(s)
- Delicia Avilla Barretto
- Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580003 Karnataka India
| | - Shyam Kumar Vootla
- Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580003 Karnataka India
| |
Collapse
|
20
|
Cueno ME, Imai K. Network analytics approach towards identifying potential antivirulence drug targets within the Staphylococcus aureus staphyloxanthin biosynthetic network. Arch Biochem Biophys 2018; 645:81-86. [PMID: 29551420 DOI: 10.1016/j.abb.2018.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/23/2018] [Accepted: 03/11/2018] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus is associated with several clinically significant infections among humans and infections associated with antibiotic-resistant strains are growing in frequency. Antivirulence strategies shift the target of drugs from bacterial growth to the infection process resulting to milder evolutionary pressure for the development of bacterial resistant strains. Staphyloxanthin (STX) is a yellowish-orange carotenoid pigment synthesized by S. aureus and this carotenoid functions as an important virulence factor for the bacteria. In this study, we elucidated whether network analytics can be used as a viable tool to identify significant components in the STX biosynthetic network which in-turn could serve as possible antivirulence drug targets. For confirmation, we correlated our results to known drugs that were able to inhibit STX biosynthesis. Throughout this study, we established that crtN(1) activity and 4,4'-diaponeurosporene amounts are significant components in the STX biosynthetic network and, moreover, network analytics can aid in identifying antivirulence drug targets within the STX biosynthetic network. Similarly, we found that network analytics is capable of identifying multiple potential targets simultaneously. Taken together, we propose that an effective antivirulence drug against S. aureus STX biosynthesis would involve targeting crtN(1) activity, 4,4'-diaponeurosporene levels, or both components.
Collapse
Affiliation(s)
- Marni E Cueno
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan.
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, 101-8310, Japan
| |
Collapse
|
21
|
Banu S, Bollu R, Naseema M, Gomedhika PM, Nagarapu L, Sirisha K, Kumar CG, Gundasw SK. A novel templates of piperazinyl-1,2-dihydroquinoline-3-carboxylates: Synthesis, anti-microbial evaluation and molecular docking studies. Bioorg Med Chem Lett 2018. [PMID: 29534925 DOI: 10.1016/j.bmcl.2018.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of piperazinyl-1,2-dihydroquinoline carboxylates were synthesized by the reaction of ethyl 4-chloro-1-methyl-2-oxo-1,2-dihydroquinoline-3-carboxylates with various piperazines and their structures were confirmed by 1H NMR, 13C NMR, IR and mass spectral analysis. All the synthesized compounds were screened for their in vitro antimicrobial activities. Further, the in silico molecular docking studies of the active compounds was performed to explore the binding interactions between piperazinyl-1,2-dihydroquinoline carboxylate derivatives and the active site of the Staphylococcus aureus (CrtM) dehydrosqualene synthase (PDB ID: 2ZCQ). The docking studies revealed that the synthesized derivatives showed high binding energies and strong H-bond interactions with the dehydrosqualene synthase validating the observed antimicrobial activity data. Based on antimicrobial activity and docking studies, the compounds 9b and 10c were identified as promising antimicrobial lead molecules. This study might provide insights to identify new drug candidates that target the S. aureus virulence factor, dehydrosqualene synthase.
Collapse
Affiliation(s)
- Saleha Banu
- Organic Chemistry Division II (CPC), CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana, India
| | - Rajitha Bollu
- Organic Chemistry Division II (CPC), CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana, India
| | - Mohammad Naseema
- Organic Chemistry Division II (CPC), CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana, India
| | - P Mary Gomedhika
- Organic Chemistry Division II (CPC), CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana, India
| | - Lingaiah Nagarapu
- Organic Chemistry Division II (CPC), CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana, India.
| | - K Sirisha
- Medicinal Chemistry and Biotechnology Division (MCB), CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - C Ganesh Kumar
- Medicinal Chemistry and Biotechnology Division (MCB), CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | | |
Collapse
|
22
|
Jaśkiewicz M, Neubauer D, Kamysz W. Comparative Study on Antistaphylococcal Activity of Lipopeptides in Various Culture Media. Antibiotics (Basel) 2017; 6:antibiotics6030015. [PMID: 28767074 PMCID: PMC5617979 DOI: 10.3390/antibiotics6030015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/17/2017] [Accepted: 07/31/2017] [Indexed: 01/01/2023] Open
Abstract
Staphylococcus aureus bacteria are one of the leading microorganisms responsible for nosocomial infections as well as being the primary causative pathogen of skin and wound infections. Currently, the therapy of staphylococcal diseases faces many difficulties, due to a variety of mechanisms of resistance and virulence factors. Moreover, a number of infections caused by S. aureus are connected with biofilm formation that impairs effectiveness of the therapy. Short cationic lipopeptides that are designed on the basis of the structure of antimicrobial peptides are likely to provide a promising alternative to conventional antibiotics. Many research groups have proved a high antistaphylococcal potential of lipopeptides, however, the use of different protocols for determination of antimicrobial activity may be the reason for inconsistency of the results. The aim of this study was to learn how the use of various bacteriological media as well as solvents may affect activity of lipopeptides and their cyclic analogs. Obtained results showed a great impact of these variables. For example, cyclic analogs were more effective when dissolved in an aqueous solution of acetic acid and bovine serum albumin (BSA). The greater activity against planktonic cultures was found in brain-heart infusion broth (BHI) and tryptic-soy broth (TSB), while the antibiofilm activity was higher in the Mueller-Hinton medium.
Collapse
Affiliation(s)
- Maciej Jaśkiewicz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland.
| | - Damian Neubauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland.
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland.
| |
Collapse
|
23
|
Synthesis of novel pyrazolo[3,4- b ]quinolinyl acetamide analogs, their evaluation for antimicrobial and anticancer activities, validation by molecular modeling and CoMFA analysis. Eur J Med Chem 2017; 130:223-239. [DOI: 10.1016/j.ejmech.2017.02.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 11/18/2022]
|
24
|
Sethupathy S, Vigneshwari L, Valliammai A, Balamurugan K, Pandian SK. l-Ascorbyl 2,6-dipalmitate inhibits biofilm formation and virulence in methicillin-resistant Staphylococcus aureus and prevents triacylglyceride accumulation in Caenorhabditis elegans. RSC Adv 2017. [DOI: 10.1039/c7ra02934a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the present study, the antibiofilm, antipathogenic and anticarotenogenic potential ofl-ascorbyl 2,6-dipalmitate (ADP) against methicillin-resistantStaphylococcus aureus(MRSA) has been evaluated.
Collapse
Affiliation(s)
- Sivasamy Sethupathy
- Department of Biotechnology
- Alagappa University
- Science Campus
- Karaikudi 630 003
- India
| | | | - Alaguvel Valliammai
- Department of Biotechnology
- Alagappa University
- Science Campus
- Karaikudi 630 003
- India
| | | | | |
Collapse
|
25
|
Synthesis, antimicrobial activity and molecular docking studies of pyrano[2,3-d]pyrimidine formimidate derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2243-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Trenin AS. [Microbial metabolites that inhibit sterol biosynthesis, their chemical diversity and characteristics of mode of action]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 39:633-57. [PMID: 25696927 DOI: 10.1134/s1068162013060095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inhibitors of sterol biosynthesis (ISB) are widespread in nature and characterized by appreciable diversity both in their chemical structure and mode of action. Many of these inhibitors express noticeable biological activity and approved themselves in development of various pharmaceuticals. In this review there is a detailed description of biologically active microbial metabolites with revealed chemical structure that have ability to inhibit sterol biosynthesis. Inhibitors of mevalonate pathway in fungous and mammalian cells, exhibiting hypolipidemic or antifungal activity, as well as inhibitors of alternative non-mevalonate (pyruvate gliceraldehyde phosphate) isoprenoid pathway, which are promising in the development of affective antimicrobial or antiparasitic drugs, are under consideration in this review. Chemical formulas of the main natural inhibitors and their semi-synthetic derivatives are represented. Mechanism of their action at cellular and biochemical level is discussed. Special attention is given to inhibitors of 3-hydroxy-3-methylglutaryl Coenzyme A (HMG-CoA) reductase (group of lovastatin) and inhibitors of acyl-CoA-cholesterol-acyl transferase (ACAT) that possess hypolipidemic activity and could be affective in the treatment of atherosclerosis. In case of inhibitors of late stages of sterol biosynthesis (after squalene formation) special attention is paid to compounds possessing evident antifungal and antitumoral activity. Explanation of mechanism of anticancer and antiviral action of microbial ISB, as well as the description of their ability to induce apoptosis is given.
Collapse
|
27
|
Kotaiah Y, Nagaraju K, Harikrishna N, Venkata Rao C, Yamini L, Vijjulatha M. Synthesis, docking and evaluation of antioxidant and antimicrobial activities of novel 1,2,4-triazolo[3,4-b][1,3,4]thiadiazol-6-yl)selenopheno[2,3-d]pyrimidines. Eur J Med Chem 2014; 75:195-202. [DOI: 10.1016/j.ejmech.2014.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 11/29/2022]
|
28
|
Liu CI, Jeng WY, Chang WJ, Shih MF, Ko TP, Wang AHJ. Structural insights into the catalytic mechanism of human squalene synthase. ACTA ACUST UNITED AC 2014; 70:231-41. [PMID: 24531458 DOI: 10.1107/s1399004713026230] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/23/2013] [Indexed: 11/11/2022]
Abstract
Squalene synthase (SQS) is a divalent metal-ion-dependent enzyme that catalyzes the two-step reductive `head-to-head' condensation of two molecules of farnesyl pyrophosphate to form squalene using presqualene diphosphate (PSPP) as an intermediate. In this paper, the structures of human SQS and its mutants in complex with several substrate analogues and intermediates coordinated with Mg2+ or Mn2+ are presented, which stepwise delineate the biosynthetic pathway. Extensive study of the SQS active site has identified several critical residues that are involved in binding reduced nicotinamide dinucleotide phosphate (NADPH). Based on mutagenesis data and a locally closed (JK loop-in) structure observed in the hSQS-(F288L)-PSPP complex, an NADPH-binding model is proposed for SQS. The results identified four major steps (substrate binding, condensation, intermediate formation and translocation) of the ordered sequential mechanisms involved in the `1'-1' isoprenoid biosynthetic pathway. These new findings clarify previous hypotheses based on site-directed mutagenesis and biochemical analysis.
Collapse
Affiliation(s)
- Chia-I Liu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Yih Jeng
- University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wei-Jung Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Min-Fang Shih
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
29
|
Andrianov AM, Kornoushenko YV, Anishchenko IV, Eremin VF, Tuzikov AV. Structural analysis of the envelope gp120 V3 loop for some HIV-1 variants circulating in the countries of Eastern Europe. J Biomol Struct Dyn 2013; 31:665-83. [DOI: 10.1080/07391102.2012.706455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Qing XY, Zhang CH, Li LL, Ji P, Ma S, Wan HL, Wang ZR, Zou J, Yang SY. Retrieving novel C5aR antagonists using a hybrid ligand-based virtual screening protocol based on SVM classification and pharmacophore models. J Biomol Struct Dyn 2013; 31:215-23. [DOI: 10.1080/07391102.2012.698245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Leejae S, Hasap L, Voravuthikunchai SP. Inhibition of staphyloxanthin biosynthesis in Staphylococcus aureus by rhodomyrtone, a novel antibiotic candidate. J Med Microbiol 2012; 62:421-428. [PMID: 23242641 DOI: 10.1099/jmm.0.047316-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Staphyloxanthin is the eponymous feature of the human pathogen Staphylococcus aureus, and the pigment promotes resistance to reactive oxygen species and host neutrophil-based killing. To probe the possible use of rhodomyrtone isolated from Rhodomyrtus tomentosa (Aiton) Hassk. leaves to inhibit pigment production in S. aureus, experiments were carried out to compare pigment production and the susceptibility of rhodomyrtone-treated S. aureus and untreated cells to oxidants in vitro. In addition, we observed the innate immune clearance of S. aureus after incubation with rhodomyrtone using an ex vivo assay system - human whole-blood survival. The results indicated that rhodomyrtone-treated S. aureus exhibited reduced pigmentation, and that rhodomyrtone treatment led to a dose-dependent increase in the susceptibility of the pathogen to H(2)O(2) and singlet oxygen killing. Consequently, the survival ability of the treated organisms decreased in freshly isolated human whole blood due to less carotenoid pigment to act as an antioxidant scavenger. Rhodomyrtone may be acting via effects on DnaK and/or σ(B), resulting in many additional effects on bacterial virulence.
Collapse
Affiliation(s)
- Sukanlaya Leejae
- Department of Microbiology and Natural Products Research Center, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | - Laila Hasap
- Department of Microbiology and Natural Products Research Center, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Department of Microbiology and Natural Products Research Center, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| |
Collapse
|
32
|
Hosainzadeh A, Gharanfoli M, Saberi M, Chamani J. Probing the interaction of human serum albumin with bilirubin in the presence of aspirin by multi-spectroscopic, molecular modeling and zeta potential techniques: insight on binary and ternary systems. J Biomol Struct Dyn 2012; 29:1013-50. [PMID: 22292958 DOI: 10.1080/073911012010525029] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Here, we report on the effect of aspirin (ASA), on the binding parameters with regard to bilirubin (BR) to human serum albumin (HSA). Two different classes of binding sites were detected. Binding to the first and second classes of the binding sites was dominated by hydrophobic forces in the case of HSA-BR, whereas in the case of the ternary system, binding to the first and second classes of the binding sites was achieved by electrostatic interaction. The binding constant (K(a)) and number of binding site (n) obtained were 1.6 × 10(6)M(-1) and 0.98, respectively, for the primary binding site in the case of HSA-BR, and 3.7 × 10(6)M(-1) and 0.84, respectively, in the presence of ASA (ternary complex) at λ(ex)= 280 nm. The progressive quenching of the protein fluorescence as the BR concentration increased indicated an arrangement of the domain IIA in HSA. Changes in the environment of the aromatic residues were also observed by synchronous fluorescence spectroscopy (SFS). Changes of the secondary structure of HSA involving a decrease of α-helical and β-sheet contents and increased amounts of turns and unordered conformations were mainly found at high concentrations of BR. For the first time, the relationship between the structural parameters of HSA-BR by RLS for determining the critical induced aggregation concentration (C(CIAC)) of BR in the absence and presence of ASA was investigated, and there was a more significant enhancement in the case of the ternary mixture as opposed to the binary one. Changes in the zeta potential of HSA and the HSA-ASA complex in the presence of BR demonstrated a hydrophobic adsorption of this anionic ligand onto the surface of HSA in the binary system as well as both electrostatic and hydrophobic adsorption in the case of the ternary complex. By performing docking experiments, it was found that the acting forces between BR and HSA were mainly hydrophobic > hydrogen bonding > electrostatic interactions, and consequently BR had a long storage time in blood plasma, especially in the presence of ASA. This was due to the electrostatic interaction force between the BR and HSA being stronger in (HSA-ASA) BR than in the HSA-BR complex. In addition, it was demonstrated that, in the presence of ASA, the first binding site of BR on HSA was altered, but the parameters of binding did not become significantly modified, and thus the affinity of BR barely changed with and without ASA.
Collapse
Affiliation(s)
- Akram Hosainzadeh
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | | | | |
Collapse
|
33
|
Chen KC, Chang SS, Huang HJ, Lin TL, Wu YJ, Chen CYC. Three-in-one agonists for PPAR-α, PPAR-γ, and PPAR-δ from traditional Chinese medicine. J Biomol Struct Dyn 2012; 30:662-83. [DOI: 10.1080/07391102.2012.689699] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Matos KS, da Cunha EF, da Silva Gonçalves A, Wilter A, Kuča K, França TC, Ramalho TC. First principles calculations of thermodynamics and kinetic parameters and molecular dynamics simulations of acetylcholinesterase reactivators: can mouse data provide new insights into humans? J Biomol Struct Dyn 2012; 30:546-58. [DOI: 10.1080/07391102.2012.687521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
35
|
Fitzgerald-Hughes D, Devocelle M, Humphreys H. Beyond conventional antibiotics for the future treatment of methicillin-resistantStaphylococcus aureusinfections: two novel alternatives. ACTA ACUST UNITED AC 2012; 65:399-412. [DOI: 10.1111/j.1574-695x.2012.00954.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 12/31/2022]
|
36
|
Alijanianzadeh M, Saboury AA, Ganjali MR, Hadi-Alijanvand H, Moosavi-Movahedi AA. Inhibition of mushroom tyrosinase by a newly synthesized ligand: inhibition kinetics and computational simulations. J Biomol Struct Dyn 2012; 30:448-59. [PMID: 22686596 DOI: 10.1080/07391102.2012.682210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Alterations in the synthesis of melanin contribute to a number of diseases; therefore, the design of new tyrosinase inhibitors is very important. Mushroom tyrosinase (MT) is a metalloenzyme, which plays an important role in melanin biosynthesis. In this study, the inhibitory effect of a novel designed compound, i.e. 2-((1Z)-(2-(2,4-dinitrophenyl)hydrazin-1-ylidene)methyl)phenol, as a specific ligand which can bind to the copper ion of MT, has been assessed. The ligand was found to competitively inhibit both the cresolase and catecholase activities of MT, with small inhibition constants of 2.8 and 2.6 μM, respectively. Intrinsic fluorescence studies were performed to gain more information on the binding constants. Docking results indicated that the ligand binds to copper ions in the active site of MT via the OH group of the ligand. The ligand makes four hydrogen bonds with aspartic acid and one hydrogen bond with the histidine residue in the active site. Molecular dynamics results show that ligand binds to the MT via both electrostatic and hydrophobic interactions with its different parts.
Collapse
|
37
|
Divsalar A, Saboury AA, Ahadi L, Zemanatiyar E, Mansouri-Torshizi H, Ajloo D, Sarma RH. Biological evaluation and interaction of a newly designed anti-cancer Pd(II) complex and human serum albumin. J Biomol Struct Dyn 2012; 29:283-96. [PMID: 21875149 DOI: 10.1080/07391102.2011.10507385] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The pharmacokinetics and pharmacodynamics of any drug will depend, largely, on the interaction that has with human serum albumin (HSA), the most abundant plasma protein. The interaction between newly synthesized Pd(II) complexe, 2,2'-bipyridin Butylglycinato Pd(II) nitrate, an anti-tumor component, with HSA was studied at different temperatures by fluorescence, far UV circular dichroism (CD), UV-visible spectrophotometry and theoretical approaches. The Pd(II) complex has a strong ability to quench the intrinsic fluorescence of HSA through a dynamic quenching procedure. The binding parameters and thermodynamic parameters, including δH°, δS° and δG° were calculated by fluorescence quenching method, indicated that hydrophobic forces play a major role in the interaction of Pd(II) complex with HSA. Based on Autodock, FRET (fluorescence resonance energy transfer) and fluorescence quenching data, it may be concluded that one of the binding sites in the complex of HSA is near the only one Trp of HSA (Trp214) in sub domain IIA of the protein. Far-UV-CD results indicated that Pd(II)-complex induced increase in the α-helical content of the protein. The anti-tumor property of the synthesized Pd(II) complex was studied by testing it on human tumor cell line K562. The 50% cytotoxic concentration (Cc₅₀) of complex was determined using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. Also, fluorescence staining with DAPI (4,6-diamidino-2-phenylindole) revealed some typical nuclear changes that are characteristic of apoptosis which is induced at Cc₅₀ concentration of Pd(II) complex in K562 cell line after 24 h incubation. Our results suggest that Pd(II) complex is a promising anti-proliferative agent and should execute its biological effects by inducing apoptosis.
Collapse
Affiliation(s)
- Adeleh Divsalar
- Institute of Biochemistry and Biophysics, University of Tehran. Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Cardiac troponin C (cTnC) is the Ca²⁺ dependent switch for contraction in heart muscle making it a potential target for drug research in the therapy of heart failure. Calcium binding on Troponin C (TnC) triggers a series of conformational changes exposing a hydrophobic pocket in the N-domain of TnC (cNTnC), which leads to force generation. Mutations and acidic pH have been related to altering the sensitivity of TnC affecting the efficiency of the heart. Bepridil, identified as a calcium sensitizer to TnC, has been experimentally found to bind to the N-domain pocket of TnC but with negative cooperativity. Screening and de novo design were carried out using LUDI and AUTOLUDI programs in this work to identify and design potential ligands that can bind to the hydrophobic pocket of TnC. Two docking centers and multiple searching radii including 5 Å, 5.5 Å, 6 Å, 6.5 Å, 7.0 Å and 7.5 Å were used in LUDI to screen the ZINC database. Based on the LUDI docking results, 8 molecules were identified from the database with good potential to bind into the binding pocket and they were used as template molecules to generate a series of new molecules by AUTOLUDI design. Out of all the newly-designed molecules, 14 new ligands were recognized to be potential ligands that can bind and fit well into the binding pocket. These molecules can be used as starting molecules to develop TnC ligands. The binding stability and binding affinity of these molecules to the protein was further analyzed by molecular dynamics simulations. The results show that the binding energies, interactions and complex stabilities of 6 ligands are comparable to or better than bepridil.
Collapse
Affiliation(s)
- Jayson F Varguhese
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
| | | |
Collapse
|
39
|
Pai S, Das M, Banerjee R, Dasgupta D. Biphasic association of T7 RNA polymerase and a nucleotide analogue, cibacron blue as a model to understand the role of initiating nucleotide in the mechanism of enzyme action. J Biomol Struct Dyn 2011; 29:153-64. [PMID: 21696231 DOI: 10.1080/07391102.2011.10507380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
T7 RNA polymerase (T7 RNAP) is an enzyme that utilizes ribonucleotides to synthesize the nascent RNA chain in a template-dependent manner. Here we have studied the interaction of T7 RNAP with cibacron blue, an anthraquinone monochlorotriazine dye, its effect on the function of the enzyme and the probable mode of binding of the dye. We have used difference absorption spectroscopy and isothermal titration calorimetry to show that the dye binds T7 RNAP in a biphasic manner. The first phase of the binding is characterized by inactivation of the enzyme. The second binding site overlaps with the common substrate-binding site of the enzyme. We have carried out docking experiment to map the binding site of the dye in the promoter bound protein. Competitive displacement of the dye from the high affinity site by labeled GTP and isothermal titration calorimetry of high affinity GTP bound enzyme with the dye suggests a strong correlation between the high affinity dye binding and the high affinity GTP binding in T7 RNAP reported earlier from our laboratory.
Collapse
Affiliation(s)
- Sudipta Pai
- Biophysics Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064, India
| | | | | | | |
Collapse
|
40
|
Li P, Tan JJ, Liu M, Zhang XY, Chen WZ, Wang CX. Insight into the Inhibitory Mechanism and Binding Mode Between D77 and HIV-1 Integrase by Molecular Modeling Methods. J Biomol Struct Dyn 2011; 29:311-23. [DOI: 10.1080/07391102.2011.10507387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Oliveira AA, Rennó MN, de Matos CAS, Bertuzzi MD, Ramalho TC, Fraga CA, França TCC. Molecular Modeling Studies ofYersinia pestisDihydrofolate Reductase. J Biomol Struct Dyn 2011; 29:351-67. [DOI: 10.1080/07391102.2011.10507390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
42
|
Wang Y, Bian F, Deng S, Shi Q, Ge M, Wang S, Zhang X, Xu S. The key residues of active sites on the catalytic fragment for paclitaxel interacting with poly (ADP-ribose) polymerase. J Biomol Struct Dyn 2011; 28:881-93. [PMID: 21469749 DOI: 10.1080/07391102.2011.10508615] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) is regarded as a target protein for paclitaxel (PTX) to bind. An important issue is to identify the key residues as active sites for PTX interacting with PARP, which will help to understand the potential drug activity of PTX against cancer cells. Using docking method and MD simulation, we have constructed a refined structure of PTX docked on the catalytic function domain of PARP (PDB code: 1A26). The residues Glu327(988), Tyr246(907), Lys242(903), His165(826), Asp105(766), Gln102(763) and Gln98(759) in PARP are identified as potential sites involved in interaction with PTX according to binding energy (E(b)) between PTX and single residue calculated with B3LYP/6-31G(d,p). These residues form an active binding pocket located on the surface of the catalytic fragment, possibly interacting with the required groups of PTX leading to its activity against cancer cells. It is noted that most of the active sites make conatct with the "southern hemisphere" of PTX except for one residue, Tyr246(907), which interacts with the "northern hemisphere" of PTX. The conformation of PTX in complex with the catalytic fragment is observed as being T-shaped, similar to that complexed with β-tubulin. The total Eb of -269.9 kJ/mol represents the potent interaction between PTX and the catalytic fragment, implying that PTX can readily bind to the active pocket. The tight association of PTX with the catalytic fragment would inhibit PARP activation, suggesting a potential application of PTX as an effective antineoplastic agent.
Collapse
Affiliation(s)
- Yue Wang
- Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, College of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kim DS, Kim CM, Won CI, Kim JK, Ryu J, Cho Y, Lee C, Bhak J. BetaDock: Shape-Priority Docking Method Based on Beta-Complex. J Biomol Struct Dyn 2011; 29:219-42. [DOI: 10.1080/07391102.2011.10507384] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Chang KW, Tsai TY, Chen KC, Yang SC, Huang HJ, Chang TT, Sun MF, Chen HY, Tsai FJ, Chen CYC. iSMART: An Integrated Cloud Computing Web Server for Traditional Chinese Medicine for Online Virtual Screening,de novoEvolution and Drug Design. J Biomol Struct Dyn 2011; 29:243-50. [DOI: 10.1080/073911011010524988] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Xie HZ, Liu LY, Ren JX, Zhou JP, Zheng RL, Li LL, Yang SY. Pharmacophore Modeling and Hybrid Virtual Screening for the Discovery of Novel IκB Kinase 2 (IKK2) Inhibitors. J Biomol Struct Dyn 2011; 29:165-79. [DOI: 10.1080/07391102.2011.10507381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
46
|
Cortopassi WA, Oliveira AA, Guimarães AP, Rennó MN, Krettli AU, França TC. Docking Studies on the Binding of Quinoline Derivatives and Hematin toPlasmodium FalciparumLactate Dehydrogenase. J Biomol Struct Dyn 2011; 29:207-18. [DOI: 10.1080/07391102.2011.10507383] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
47
|
Chang TT, Sun MF, Chen HY, Tsai FJ, Chen CYC. Drug design for hemagglutinin: Screening and molecular dynamics from traditional Chinese medicine database. J Taiwan Inst Chem Eng 2011. [DOI: 10.1016/j.jtice.2010.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Ramalho TC, Caetano MS, Josa D, Luz GP, Freitas EA, da Cunha EFF. Molecular Modeling ofMycobacterium TuberculosisdUTpase: Docking and Catalytic Mechanism Studies. J Biomol Struct Dyn 2011; 28:907-17. [DOI: 10.1080/07391102.2011.10508617] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Pankratov AN, Tsivileva OM, Drevko BI, Nikitina VE. Compounds of the 1,5-di(4-R-phenyl)-3-selenopentanediones-1,5 series interaction with the BasidiomyceteLentinula edodes, lectins: Computations and Experiment. J Biomol Struct Dyn 2011; 28:969-74. [DOI: 10.1080/07391102.2011.10508622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Atri MS, Saboury AA, Moosavi-Movahedi AA, Goliaei B, Sefidbakht Y, Alijanvand HH, Sharifzadeh A, Niasari-Naslaji A. Structure and Stability Analysis of Cytotoxic Complex of Camel α-Lactalbumin and Unsaturated Fatty Acids Produced at High Temperature. J Biomol Struct Dyn 2011; 28:919-28. [DOI: 10.1080/07391102.2011.10508618] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|