1
|
3dDNA: A Computational Method of Building DNA 3D Structures. Molecules 2022; 27:molecules27185936. [PMID: 36144680 PMCID: PMC9503956 DOI: 10.3390/molecules27185936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 02/07/2023] Open
Abstract
Considerable progress has been made in the prediction methods of 3D structures of RNAs. In contrast, no such methods are available for DNAs. The determination of 3D structures of the latter is also increasingly needed for understanding their functions and designing new DNA molecules. Since the number of experimental structures of DNA is limited at present, here, we propose a computational and template-based method, 3dDNA, which combines DNA and RNA template libraries to predict DNA 3D structures. It was benchmarked on three test sets with different numbers of chains, and the results show that 3dDNA can predict DNA 3D structures with a mean RMSD of about 2.36 Å for those with one or two chains and fewer than 4 Å with three or more chains.
Collapse
|
2
|
Liu JH, Xi K, Zhang X, Bao L, Zhang X, Tan ZJ. Structural Flexibility of DNA-RNA Hybrid Duplex: Stretching and Twist-Stretch Coupling. Biophys J 2019; 117:74-86. [PMID: 31164196 PMCID: PMC6626833 DOI: 10.1016/j.bpj.2019.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/25/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022] Open
Abstract
DNA-RNA hybrid (DRH) duplexes play essential roles during the replication of DNA and the reverse transcription of RNA viruses, and their flexibility is important for their biological functions. Recent experiments indicated that A-form RNA and B-form DNA have a strikingly different flexibility in stretching and twist-stretch coupling, and the structural flexibility of DRH duplex is of great interest, especially in stretching and twist-stretch coupling. In this work, we performed microsecond all-atom molecular dynamics simulations with new AMBER force fields to characterize the structural flexibility of DRH duplex in stretching and twist-stretch coupling. We have calculated all the helical parameters, stretch modulus, and twist-stretch coupling parameters for the DRH duplex. First, our analyses on structure suggest that the DRH duplex exhibits an intermediate conformation between A- and B-forms and closer to A-form, which can be attributed to the stronger rigidity of the RNA strand than the DNA strand. Second, our calculations show that the DRH duplex has the stretch modulus of 834 ± 34 pN and a very weak twist-stretch coupling. Our quantitative analyses indicate that, compared with DNA and RNA duplexes, the different flexibility of the DRH duplex in stretching and twist-stretch coupling is mainly attributed to its apparently different basepair inclination in the helical structure.
Collapse
Affiliation(s)
- Ju-Hui Liu
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Kun Xi
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Xi Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Lei Bao
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Xinghua Zhang
- College of Life Science, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China.
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Wagner JR, Demir Ö, Carpenter MA, Aihara H, Harki DA, Harris RS, Amaro RE. Determinants of Oligonucleotide Selectivity of APOBEC3B. J Chem Inf Model 2019; 59:2264-2273. [PMID: 30130104 PMCID: PMC6644697 DOI: 10.1021/acs.jcim.8b00427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
APOBEC3B (A3B) is a prominent source of mutation in many cancers. To date, it has been difficult to capture the native protein-DNA interactions that confer A3B's substrate specificity by crystallography due to the highly dynamic nature of wild-type A3B active site. We use computational tools to restore a recent crystal structure of a DNA-bound A3B C-terminal domain mutant construct to its wild type sequence, and run molecular dynamics simulations to study its substrate recognition mechanisms. Analysis of these simulations reveal dynamics of the native A3Bctd-oligonucleotide interactions, including the experimentally inaccessible loop 1-oligonucleotide interactions. A second series of simulations in which the target cytosine nucleotide was computationally mutated from a deoxyribose to a ribose show a change in sugar ring pucker, leading to a rearrangement of the binding site and revealing a potential intermediate in the binding pathway. Finally, apo simulations of A3B, starting from the DNA-bound open state, experience a rapid and consistent closure of the binding site, reaching conformations incompatible with substrate binding. This study reveals a more realistic and dynamic view of the wild type A3B binding site and provides novel insights for structure-guided design efforts for A3B.
Collapse
Affiliation(s)
- Jeffrey R Wagner
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093-0340 , United States
| | - Özlem Demir
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093-0340 , United States
| | - Michael A Carpenter
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- Institute for Molecular Virology , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- Institute for Molecular Virology , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Daniel A Harki
- Department of Medicinal Chemistry , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- Institute for Molecular Virology , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- Howard Hughes Medical Institute , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093-0340 , United States
| |
Collapse
|
4
|
Dutta N, Dutta Chowdhury S, Lahiri A. Probing the functional conformations of an atypical proline-rich fusion peptide. Phys Chem Chem Phys 2019; 21:20727-20742. [DOI: 10.1039/c9cp02216c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simulations confirm a propensity for extended and solvent exposed conformations of the p15 fusion peptide capable of membrane targeting.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics
- Molecular Biology and Bioinformatics
- University of Calcutta
- Kolkata 700009
- India
| | - Saikat Dutta Chowdhury
- Department of Biophysics
- Molecular Biology and Bioinformatics
- University of Calcutta
- Kolkata 700009
- India
| | - Ansuman Lahiri
- Department of Biophysics
- Molecular Biology and Bioinformatics
- University of Calcutta
- Kolkata 700009
- India
| |
Collapse
|
5
|
Bao L, Zhang X, Shi YZ, Wu YY, Tan ZJ. Understanding the Relative Flexibility of RNA and DNA Duplexes: Stretching and Twist-Stretch Coupling. Biophys J 2017; 112:1094-1104. [PMID: 28355538 DOI: 10.1016/j.bpj.2017.02.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/02/2017] [Accepted: 02/21/2017] [Indexed: 01/16/2023] Open
Abstract
The flexibility of double-stranded (ds) RNA and dsDNA is crucial for their biological functions. Recent experiments have shown that the flexibility of dsRNA and dsDNA can be distinctively different in the aspects of stretching and twist-stretch coupling. Although various studies have been performed to understand the flexibility of dsRNA and dsDNA, there is still a lack of deep understanding of the distinctive differences in the flexibility of dsRNA and dsDNA helices as pertains to their stretching and twist-stretch coupling. In this work, we have explored the relative flexibility in stretching and twist-stretch coupling between dsRNA and dsDNA by all-atom molecular dynamics simulations. The calculated stretch modulus and twist-stretch coupling are in good accordance with the existing experiments. Our analyses show that the differences in stretching and twist-stretch coupling between dsRNA and dsDNA helices are mainly attributed to their different (A- and B-form) helical structures. Stronger basepair inclination and slide in dsRNA is responsible for the apparently weaker stretching rigidity versus that of dsDNA, and the opposite twist-stretch coupling for dsRNA and dsDNA is also attributed to the stronger basepair inclination in dsRNA than in dsDNA. Our calculated macroscopic elastic parameters and microscopic analyses are tested and validated by different force fields for both dsRNA and dsDNA.
Collapse
Affiliation(s)
- Lei Bao
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Xi Zhang
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China
| | - Ya-Zhou Shi
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China; Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China
| | - Yuan-Yan Wu
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China; College of Physical Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhi-Jie Tan
- Center for Theoretical Physics and Key Laboratory of Artificial Micro- & Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Binding of single stranded nucleic acids to cationic ligand functionalized gold nanoparticles. Biointerphases 2016; 11:04B305. [PMID: 27835922 DOI: 10.1116/1.4966653] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The interactions of nanoparticles (NPs) with single stranded nucleic acids (NAs) have important implications in gene delivery, and nanotechnological and biomedical applications. Here, the complexation of cationic ligand functionalized gold nanoparticles with single stranded deoxyribose nucleic acid (DNA) and ribonucleic acid (RNA) are examined using all atom molecular dynamics simulations. The results indicated that complexation depends mostly on charge of nanoparticle, and, to lesser extent, sequence and type of nucleic acid. For cationic nanoparticles, electrostatic interactions between charged ligands and the nucleic acid backbone dominate binding regardless of nanoparticle charge. Highly charged nanoparticles bind more tightly and cause compaction of the single-stranded NAs through disruption of intrastrand π-π stacking and hydrogen bonding. However, poly-purine strands (polyA-DNA, polyA-RNA) show less change in structure than poly-pyrimidine strands (polyT-DNA, polyU-RNA). Overall, the results show that control over ssNA structure may be achieved with cationic NPs with a charge of more than 30, but the extent of the structural changes depends on sequence.
Collapse
|
7
|
Wang J, Xiao Y. Types and concentrations of metal ions affect local structure and dynamics of RNA. Phys Rev E 2016; 94:040401. [PMID: 27841650 DOI: 10.1103/physreve.94.040401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Indexed: 01/01/2023]
Abstract
The roles that metal ions play in the structure and dynamics of RNA molecules are long-standing problems that have been studied extensively but are still not well understood. Here we show that metal ions have distributions around RNA molecules that strongly depend on the types and concentrations of the metal ions and also the electrostatic surface of the molecule. In particular, the ion distributions may not balance all the local electronegativity of the molecule. These ion distributions do not only greatly affect local structures but also lead to different local dynamics of RNA. We studied the effects of different ion solutions on the structure and dynamics of RNA by taking the preQ_{1} riboswitch aptamer domain as an illustrative example and using molecular dynamics simulations. Since the local structures and dynamics of RNAs are important to their functions, our results also indicate that the selection of proper ion conditions is necessary to model them correctly, in contrast to the use of diverse ion solutions in current molecular dynamics simulations.
Collapse
Affiliation(s)
- Jun Wang
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Xiao
- Biomolecular Physics and Modeling Group, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
8
|
Deb I, Sarzynska J, Nilsson L, Lahiri A. Rapid communication capturing the destabilizing effect of dihydrouridine through molecular simulations. Biopolymers 2016; 101:985-91. [PMID: 24729441 DOI: 10.1002/bip.22495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 01/08/2023]
Abstract
The structural effects of the commonly occurring modified nucleoside dihydrouridine (D) observed experimentally in model oligonucleotides include a strong destabilization of the C3'-endo sugar conformation of D, the disruption of stacking interactions of neighboring residues with D and a possible destabilization of the C3'-endo sugar pucker of the 5'-neighboring nucleoside. Our simulations with a combination of a set of parameters for modified RNA residues with the recently developed AMBER FF99χ force field having reoptimized glycosidic torsion angle parameters for standard nucleosides was found to reproduce the destabilizing effect of dihydrouridine better than with the AMBER FF99 force field for nucleic acids for which the parameters for the modified residues were originally developed.
Collapse
Affiliation(s)
- Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, West Bengal, India
| | | | | | | |
Collapse
|
9
|
Deb I, Pal R, Sarzynska J, Lahiri A. Reparameterizations of theχTorsion and Lennard-JonesσParameters Improve the Conformational Characteristics of Modified Uridines. J Comput Chem 2016; 37:1576-88. [DOI: 10.1002/jcc.24374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/05/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics; University of Calcutta; 92 APC Road Kolkata West Bengal 700009 India
- Institute of Bioorganic Chemistry, Polish Academy of Sciences; Noskowskiego 12/14 Poznan 61-704 Poland
| | - Rupak Pal
- Department of Biophysics, Molecular Biology and Bioinformatics; University of Calcutta; 92 APC Road Kolkata West Bengal 700009 India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences; Noskowskiego 12/14 Poznan 61-704 Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics; University of Calcutta; 92 APC Road Kolkata West Bengal 700009 India
| |
Collapse
|
10
|
Wu YY, Bao L, Zhang X, Tan ZJ. Flexibility of short DNA helices with finite-length effect: From base pairs to tens of base pairs. J Chem Phys 2016; 142:125103. [PMID: 25833610 DOI: 10.1063/1.4915539] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Flexibility of short DNA helices is important for the biological functions such as nucleosome formation and DNA-protein recognition. Recent experiments suggest that short DNAs of tens of base pairs (bps) may have apparently higher flexibility than those of kilo bps, while there is still the debate on such high flexibility. In the present work, we have studied the flexibility of short DNAs with finite-length of 5-50 bps by the all-atomistic molecular dynamics simulations and Monte Carlo simulations with the worm-like chain model. Our microscopic analyses reveal that short DNAs have apparently high flexibility which is attributed to the significantly strong bending and stretching flexibilities of ∼6 bps at each helix end. Correspondingly, the apparent persistence length lp of short DNAs increases gradually from ∼29 nm to ∼45 nm as DNA length increases from 10 to 50 bps, in accordance with the available experimental data. Our further analyses show that the short DNAs with excluding ∼6 bps at each helix end have the similar flexibility with those of kilo bps and can be described by the worm-like chain model with lp ∼ 50 nm.
Collapse
Affiliation(s)
- Yuan-Yan Wu
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lei Bao
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xi Zhang
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhi-Jie Tan
- Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
11
|
Wang J, Zhao Y, Wang J, Xiao Y. Computational study of stability of an H-H-type pseudoknot motif. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062705. [PMID: 26764725 DOI: 10.1103/physreve.92.062705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 05/24/2023]
Abstract
Motifs in RNA tertiary structures are important to their structural organizations and biological functions. Here we consider an H-H-type pseudoknot (HHpk) motif that consists of two hairpins connected by a junction loop and with kissing interactions between the two hairpin loops. Such a tertiary structural motif is recurrently found in RNA tertiary structures, but is difficult to predict computationally. So it is important to understand the mechanism of its formation and stability. Here we investigate the stability of the HHpk tertiary structure by using an all-atom molecular dynamics simulation. The results indicate that the HHpk tertiary structure is stable. However, it is found that this stability is not due to the helix-helix packing, as is usually expected, but is maintained by the combined action of the kissing hairpin loops and junctions, although the former plays the main role. Stable HHpk motifs may form structural platforms for the molecules to realize their biological functions. These results are useful for understanding the construction principle of RNA tertiary structures and structure prediction.
Collapse
Affiliation(s)
- Jun Wang
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yunjie Zhao
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jian Wang
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Xiao
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
12
|
RNA folding: structure prediction, folding kinetics and ion electrostatics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 827:143-83. [PMID: 25387965 DOI: 10.1007/978-94-017-9245-5_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Beyond the "traditional" functions such as gene storage, transport and protein synthesis, recent discoveries reveal that RNAs have important "new" biological functions including the RNA silence and gene regulation of riboswitch. Such functions of noncoding RNAs are strongly coupled to the RNA structures and proper structure change, which naturally leads to the RNA folding problem including structure prediction and folding kinetics. Due to the polyanionic nature of RNAs, RNA folding structure, stability and kinetics are strongly coupled to the ion condition of solution. The main focus of this chapter is to review the recent progress in the three major aspects in RNA folding problem: structure prediction, folding kinetics and ion electrostatics. This chapter will introduce both the recent experimental and theoretical progress, while emphasize the theoretical modelling on the three aspects in RNA folding.
Collapse
|
13
|
Bergonzo C, Galindo-Murillo R, Cheatham TE. Molecular modeling of nucleic Acid structure: electrostatics and solvation. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2014; 55:7.9.1-27. [PMID: 25631536 DOI: 10.1002/0471142700.nc0709s55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand its structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as a way of sampling conformational space for a better understanding of the relevance of a given model. This discussion highlighted the major limitations with modeling in general. When sampling conformational space effectively, difficult issues are encountered, such as multiple minima or conformational sampling problems, and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These subjects are discussed in detail in this unit.
Collapse
Affiliation(s)
- Christina Bergonzo
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah
| | | | | |
Collapse
|
14
|
Liu C, Janowski PA, Case DA. All-atom crystal simulations of DNA and RNA duplexes. Biochim Biophys Acta Gen Subj 2014; 1850:1059-1071. [PMID: 25255706 DOI: 10.1016/j.bbagen.2014.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Molecular dynamics simulations can complement experimental measures of structure and dynamics of biomolecules. The quality of such simulations can be tested by comparisons to models refined against experimental crystallographic data. METHODS We report simulations of DNA and RNA duplexes in their crystalline environment. The calculations mimic the conditions for PDB entries 1D23 [d(CGATCGATCG)2] and 1RNA [(UUAUAUAUAUAUAA)2], and contain 8 unit cells, each with 4 copies of the Watson-Crick duplex; this yields in aggregate 64μs of duplex sampling for DNA and 16μs for RNA. RESULTS The duplex structures conform much more closely to the average structure seen in the crystal than do structures extracted from a solution simulation with the same force field. Sequence-dependent variations in helical parameters, and in groove widths, are largely maintained in the crystal structure, but are smoothed out in solution. However, the integrity of the crystal lattice is slowly degraded in both simulations, with the result that the interfaces between chains become heterogeneous. This problem is more severe for the DNA crystal, which has fewer inter-chain hydrogen bond contacts than does the RNA crystal. CONCLUSIONS Crystal simulations using current force fields reproduce many features of observed crystal structures, but suffer from a gradual degradation of the integrity of the crystal lattice. GENERAL SIGNIFICANCE The results offer insights into force-field simulations that test their ability to preserve weak interactions between chains, which will be of importance also in non-crystalline applications that involve binding and recognition. This article is part of a Special Issue entitled Recent developments of molecular dynamics.
Collapse
Affiliation(s)
- Chunmei Liu
- The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Dept. of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Pawel A Janowski
- Dept. of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - David A Case
- Dept. of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
15
|
Kruse H, Havrila M, Šponer J. QM Computations on Complete Nucleic Acids Building Blocks: Analysis of the Sarcin–Ricin RNA Motif Using DFT-D3, HF-3c, PM6-D3H, and MM Approaches. J Chem Theory Comput 2014; 10:2615-29. [DOI: 10.1021/ct500183w] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Holger Kruse
- CEITEC
− Central European Institute of Technology, Campus Bohunice, Kamenice
5, 625 00 Brno, Czech Republic
| | - Marek Havrila
- CEITEC
− Central European Institute of Technology, Campus Bohunice, Kamenice
5, 625 00 Brno, Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| | - Jiřı́ Šponer
- CEITEC
− Central European Institute of Technology, Campus Bohunice, Kamenice
5, 625 00 Brno, Czech Republic
- Institute
of Biophysics, Academy of Sciences of the Czech Republic, Královopolská
135, 612 65 Brno, Czech Republic
| |
Collapse
|
16
|
A novel implicit solvent model for simulating the molecular dynamics of RNA. Biophys J 2014; 105:1248-57. [PMID: 24010668 DOI: 10.1016/j.bpj.2013.07.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/21/2013] [Accepted: 07/23/2013] [Indexed: 11/24/2022] Open
Abstract
Although molecular dynamics simulations can be accelerated by more than an order of magnitude by implicitly describing the influence of the solvent with a continuum model, most currently available implicit solvent simulations cannot robustly simulate the structure and dynamics of nucleic acids. The difficulties become exacerbated especially for RNAs, suggesting the presence of serious physical flaws in the prior continuum models for the influence of the solvent and counter ions on the nucleic acids. We present a novel, to our knowledge, implicit solvent model for simulating nucleic acids by combining the Langevin-Debye model and the Poisson-Boltzmann equation to provide a better estimate of the electrostatic screening of both the water and counter ions. Tests of the model involve comparisons of implicit and explicit solvent simulations for three RNA targets with 20, 29, and 75 nucleotides. The model provides reasonable agreement with explicit solvent simulations, and directions for future improvement are noted.
Collapse
|
17
|
Deb I, Sarzynska J, Nilsson L, Lahiri A. Conformational preferences of modified uridines: comparison of AMBER derived force fields. J Chem Inf Model 2014; 54:1129-42. [PMID: 24697757 DOI: 10.1021/ci400582a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The widespread occurrence of modified residues in RNA sequences necessitates development of accurate parameters for these modifications for reliable modeling of RNA structure and dynamics. A comprehensive set of parameters for the 107 naturally occurring RNA modifications was proposed by Aduri et al. (J. Chem. Theory Comput. 2007, 3, 1464-1475) for the AMBER FF99 force field. In this work, we tested these parameters on a set of modified uridine residues, namely, dihydrouridine, 2-thiouridine, 4-thiouridine, pseudouridine, and uridine-5-oxyacetic acid, by performing molecular dynamics and replica exchange molecular dynamics simulations of these nucleosides. Although our simulations using the FF99 force field did not, in general, reproduce the experimentally observed conformational characteristics well, combination of the parameter set with recent revisions of the FF99 force field for RNA showed noticeable improvement for some of the nucleosides.
Collapse
Affiliation(s)
- Indrajit Deb
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta , Kolkata 700009, West Bengal, India
| | | | | | | |
Collapse
|
18
|
Gong Z, Zhao Y, Chen C, Duan Y, Xiao Y. Insights into ligand binding to PreQ1 Riboswitch Aptamer from molecular dynamics simulations. PLoS One 2014; 9:e92247. [PMID: 24663240 PMCID: PMC3963873 DOI: 10.1371/journal.pone.0092247] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/19/2014] [Indexed: 11/19/2022] Open
Abstract
Riboswitches play roles in transcriptional or translational regulation through specific ligand binding of their aptamer domains. Although a number of ligand-bound aptamer complex structures have been solved, it is important to know ligand-free conformations of the aptamers in order to understand the mechanism of specific binding by ligands. In this paper, preQ1 riboswitch aptamer domain from Bacillus subtilis is studied by overall 1.5 μs all-atom molecular dynamics simulations We found that the ligand-free aptamer has a stable state with a folded P1-L3 and open binding pocket. The latter forms a cytosine-rich pool in which the nucleotide C19 oscillates between close and open positions, making it a potential conformation for preQ1 entrance. The dynamic picture further suggests that the specific recognition of preQ1 by the aptamer domain is not only facilitated by the key nucleotide C19 but also aided and enhanced by other cytosines around the binding pocket. These results should help to understand the details of preQ1 binding.
Collapse
Affiliation(s)
- Zhou Gong
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunjie Zhao
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Changjun Chen
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Duan
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Genome Center and Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Yi Xiao
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail:
| |
Collapse
|
19
|
Atomistic simulation studies of the α/β-glucoside and galactoside in anhydrous bilayers: effect of the anomeric and epimeric configurations. J Mol Model 2014; 20:2165. [DOI: 10.1007/s00894-014-2165-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
|
20
|
Guo D, Liu S, Huang Y, Xiao Y. Preorientation of protein and RNA just before contacting. J Biomol Struct Dyn 2013; 31:716-28. [DOI: 10.1080/07391102.2012.708604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Henriksen NM, Roe DR, Cheatham TE. Reliable oligonucleotide conformational ensemble generation in explicit solvent for force field assessment using reservoir replica exchange molecular dynamics simulations. J Phys Chem B 2013; 117:4014-27. [PMID: 23477537 PMCID: PMC3775460 DOI: 10.1021/jp400530e] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular dynamics force field development and assessment requires a reliable means for obtaining a well-converged conformational ensemble of a molecule in both a time-efficient and cost-effective manner. This remains a challenge for RNA because its rugged energy landscape results in slow conformational sampling and accurate results typically require explicit solvent which increases computational cost. To address this, we performed both traditional and modified replica exchange molecular dynamics simulations on a test system (alanine dipeptide) and an RNA tetramer known to populate A-form-like conformations in solution (single-stranded rGACC). A key focus is on providing the means to demonstrate that convergence is obtained, for example, by investigating replica RMSD profiles and/or detailed ensemble analysis through clustering. We found that traditional replica exchange simulations still require prohibitive time and resource expenditures, even when using GPU accelerated hardware, and our results are not well converged even at 2 μs of simulation time per replica. In contrast, a modified version of replica exchange, reservoir replica exchange in explicit solvent, showed much better convergence and proved to be both a cost-effective and reliable alternative to the traditional approach. We expect this method will be attractive for future research that requires quantitative conformational analysis from explicitly solvated simulations.
Collapse
Affiliation(s)
- Niel M. Henriksen
- Department of Medicinal Chemistry, College of Pharmacy, 2000 East 30 South Skaggs 201, University of Utah, Salt Lake City, UT, 84112, USA
| | - Daniel R. Roe
- Department of Medicinal Chemistry, College of Pharmacy, 2000 East 30 South Skaggs 201, University of Utah, Salt Lake City, UT, 84112, USA
| | - Thomas E. Cheatham
- Department of Medicinal Chemistry, College of Pharmacy, 2000 East 30 South Skaggs 201, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
22
|
Guo Y, Zhang W. Molecular dynamics simulation of RNA pseudoknot unfolding pathway. WUHAN UNIVERSITY JOURNAL OF NATURAL SCIENCES 2013. [PMCID: PMC7149040 DOI: 10.1007/s11859-013-0905-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Many biological functions of RNA molecules are related to their pseudoknot structures. It is significant for predicting the structure and function of RNA that learning about the stability and the process of RNA pseudoknot folding and unfolding. The structural features of mouse mammary tumor virus (MMTV) RNA pseudoknot in different ion concentration, the unfolding process of the RNA pseudoknot, and the two hairpin helices that constitute the RNA pseudoknot were studied with all atom molecule dynamics simulation method in this paper. We found that the higher cation concentration can cause structure of the RNA molecules more stable, and ions played an indispensable role in keeping the structure of RNA molecules stable; the unfolding process of hairpin structure was corresponding to the antiprocess of its folding process. The main pathway of pseudoknot unfolding was that the inner base pair opened first, and then, the two helices, which formed the RNA pseudoknot opened decussately, while the folding pathway of the RNA pseudoknot was a helix folding after formation of the other helix. Therefore, the unfolding process of RNA pseudoknot is different from the antiprocess of its folding process, and the unfolding process of each helix in the RNA pseudoknot is similar to the hairpin structure’s unfolding process, which means that both are the unzipping process.
Collapse
|
23
|
John S, Thangapandian S, Lee KW. Potential human cholesterol esterase inhibitor design: benefits from the molecular dynamics simulations and pharmacophore modeling studies. J Biomol Struct Dyn 2012; 29:921-36. [PMID: 22292952 DOI: 10.1080/07391102.2012.10507419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Human pancreatic cholesterol esterase (hCEase) is one of the lipases found to involve in the digestion of large and broad spectrum of substrates including triglycerides, phospholipids, cholesteryl esters, etc. The presence of bile salts is found to be very important for the activation of hCEase. Molecular dynamic simulations were performed for the apoform and bile salt complexed form of hCEase using the co-ordinates of two bile salts from bovine CEase. The stability of the systems throughout the simulation time was checked and two representative structures from the highly populated regions were selected using cluster analysis. These two representative structures were used in pharmacophore model generation. The generated pharmacophore models were validated and used in database screening. The screened hits were refined for their drug-like properties based on Lipinski's rule of five and ADMET properties. The drug-like compounds were further refined by molecular docking simulation using GOLD program based on the GOLD fitness score, mode of binding, and molecular interactions with the active site amino acids. Finally, three hits of novel scaffolds were selected as potential leads to be used in novel and potent hCEase inhibitor design. The stability of binding modes and molecular interactions of these final hits were re-assured by molecular dynamics simulations.
Collapse
Affiliation(s)
- Shalini John
- Division of Applied Life Science_(BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC) Gyeongsang National University (GNU), 501 Jinju-daero, Gazha-dong, Jinju 660-701, Republic of Korea
| | | | | |
Collapse
|
24
|
Zhao Y, Huang Y, Gong Z, Wang Y, Man J, Xiao Y. Automated and fast building of three-dimensional RNA structures. Sci Rep 2012; 2:734. [PMID: 23071898 PMCID: PMC3471093 DOI: 10.1038/srep00734] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/17/2012] [Indexed: 12/22/2022] Open
Abstract
Building tertiary structures of non-coding RNA is required to understand their functions and design new molecules. Current algorithms of RNA tertiary structure prediction give satisfactory accuracy only for small size and simple topology and many of them need manual manipulation. Here, we present an automated and fast program,3dRNA, for RNA tertiary structure prediction with reasonable accuracy for RNAs of larger size and complex topology.
Collapse
Affiliation(s)
- Yunjie Zhao
- Biomolecular Physics and Modeling Group, Department of Physics Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | | | | | | | | | | |
Collapse
|
25
|
Halder S, Bhattacharyya D. Structural Variations of Single and Tandem Mismatches in RNA Duplexes: A Joint MD Simulation and Crystal Structure Database Analysis. J Phys Chem B 2012; 116:11845-56. [PMID: 22953716 DOI: 10.1021/jp305628v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sukanya Halder
- Biophysics
Division and ‡Computational Science Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, 700 064, India
| | - Dhananjay Bhattacharyya
- Biophysics
Division and ‡Computational Science Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, 700 064, India
| |
Collapse
|
26
|
Gong Z, Zhao Y, Chen C, Xiao Y. Computational study of unfolding and regulation mechanism of preQ1 riboswitches. PLoS One 2012; 7:e45239. [PMID: 23028870 PMCID: PMC3444477 DOI: 10.1371/journal.pone.0045239] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 08/17/2012] [Indexed: 11/18/2022] Open
Abstract
Riboswitches are novel RNA regulatory elements. Each riboswitch molecule consists of two domains: aptamer and express platform. The three-dimensional (3D) structure of the aptamer domain, depending on ligand binding or not, controls that of the express platform, which then switches on or off transcriptional or translational process. Here we study the two types of preQ(1) riboswitch aptamers from T. Tengcongensis (denoted as Tte preQ(1) riboswitch for short below) and Bacillus subtilis (denoted as Bsu preQ(1) riboswitch for short below), respectively. The free-state 3D structure of the Tte preQ(1) riboswitch is the same as its bound state but the Bsu preQ(1) riboswitch is not. Therefore, it is very interesting to investigate how these riboswitches realize their different regulation functions. We simulated the unfolding of these two aptamers through all-atom molecular dynamic simulation and found that they have similar unfolding or folding pathways and ligand-binding processes. The main difference between them is the folding intermediate states. The similarity and difference of their unfolding or folding dynamics may suggest their similar regulation mechanisms and account for their different functions, respectively. These results are also useful to understand the regulation mechanism of other riboswitches with free-state 3D structures similar to their bound states.
Collapse
Affiliation(s)
- Zhou Gong
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunjie Zhao
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Changjun Chen
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Xiao
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
27
|
Hu JP, He HQ, Tang DY, Sun GF, Zhang YQ, Fan J, Chang S. Study on the interactions between diketo-acid inhibitors and prototype foamy virus integrase-DNA complex via molecular docking and comparative molecular dynamics simulation methods. J Biomol Struct Dyn 2012; 31:734-47. [PMID: 22913375 DOI: 10.1080/07391102.2012.709458] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) integrase (IN) is an important drug target for anti-acquired immune deficiency disease (AIDS) treatment and diketo-acid (DKA) inhibitors are potent and selective inhibitors of HIV-1 IN. Due to lack of three-dimensional structures including detail interactions between HIV-1 IN and its substrate viral DNA, the drug design and screening platform remains incompleteness and deficient. In addition, the action mechanism of DKA inhibitors with HIV-1 IN is not well understood. In view of the high homology between the structure of prototype foamy virus (PFV) IN and that of HIV-1 IN, we used PFV IN as a surrogate model for HIV-1 IN to investigate the inhibitory mechanism of raltegravir (RLV) and the binding modes with a series of DKA inhibitors. Firstly, molecular dynamics simulations of PFV IN, IN-RLV, IN-DNA, and IN-DNA-RLV systems were performed for 10 ns each. The interactions and inhibitory mechanism of RLV to PFV IN were explored through overall dynamics behaviors, catalytic loop conformation distribution, and hydrogen bond network analysis. The results show that the coordinated interactions of RLV with IN and viral DNA slightly reduce the flexibility of catalytic loop region of IN, and remarkably restrict the mobility of the CA end of viral DNA, which may lead to the partial loss of the inhibitory activity of IN. Then, we docked a series of DKA inhibitors into PFV IN-DNA receptor and obtained the IN-DNA-inhibitor complexes. The docking results between PFV IN-DNA and DKA inhibitors agree well with the corresponding complex of HIV-1 IN, which proves the dependability of PFV IN-DNA used for the anti-AIDS drug screening. Our study may help to make clear some theoretical questions and to design anti-AIDS drug based on the structure of IN.
Collapse
Affiliation(s)
- Jian-Ping Hu
- Department of Chemistry and Life Science, Leshan Normal University, Leshan, China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Chen C, Huang Y, Xiao Y. Enhanced sampling of molecular dynamics simulation of peptides and proteins by double coupling to thermal bath. J Biomol Struct Dyn 2012; 31:206-14. [PMID: 22830440 DOI: 10.1080/07391102.2012.698244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Low sampling efficiency in conformational space is the well-known problem for conventional molecular dynamics. It greatly increases the difficulty for molecules to find the transition path to native state, and costs amount of CPU time. To accelerate the sampling, in this paper, we re-couple the critical degrees of freedom in the molecule to environment temperature, like dihedrals in generalized coordinates or nonhydrogen atoms in Cartesian coordinate. After applying to ALA dipeptide model, we find that this modified molecular dynamics greatly enhances the sampling behavior in the conformational space and provides more information about the state-to-state transition, while conventional molecular dynamics fails to do so. Moreover, from the results of 16 independent 100 ns simulations by the new method, it shows that trpzip2 has one-half chances to reach the naive state in all the trajectories, which is greatly higher than conventional molecular dynamics. Such an improvement would provide a potential way for searching the conformational space or predicting the most stable states of peptides and proteins.
Collapse
Affiliation(s)
- Changjun Chen
- Department of Physics, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | | |
Collapse
|
29
|
Spasic A, Serafini J, Mathews DH. The Amber ff99 Force Field Predicts Relative Free Energy Changes for RNA Helix Formation. J Chem Theory Comput 2012; 8:2497-2505. [PMID: 23112748 PMCID: PMC3482406 DOI: 10.1021/ct300240k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability of the Amber ff99 force field to predict relative free energies of RNA helix formation was investigated. The test systems were three hexaloop RNA hairpins with identical loops and varying stems. The potential of mean force of stretching the hairpins from the native state to an extended conformation was calculated with umbrella sampling. Because the hairpins have identical loop sequence, the differences in free energy changes are only from the stem composition. The Amber ff99 force field was able to correctly predict the order of stabilities of the hairpins, although the magnitude of the free energy change is larger than that determined by optical melting experiments. The two measurements cannot be compared directly because the unfolded state in the optical melting experiments is a random coil, while the end state in the umbrella sampling simulations was an elongated chain. The calculations can be compared to reference data by using a thermodynamic cycle. By applying the thermodynamic cycle to the transitions between the hairpins using simulations and nearest neighbor data, agreement was found to be within the sampling error of simulations, thus demonstrating that ff99 force field is able to accurately predict relative free energies of RNA helix formation.
Collapse
Affiliation(s)
- Aleksandar Spasic
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York
| | - John Serafini
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York
| | - David H. Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York
- Department of Biostatistics & Computational Biology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
30
|
Chang S, He HQ, Hu JP, Jiao X, Tian XH. Network models reveal stability and structural rearrangement of signal recognition particle. J Biomol Struct Dyn 2012; 30:150-9. [PMID: 22702726 DOI: 10.1080/07391102.2012.677765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The signal recognition particle (SRP) and its receptors (SR) mediate the cotranslational targeting of the membrane and secretory proteins in all cells. In Escherichia coli, SRP is composed of the Ffh protein and the 4.5S SRP RNA. Ffh is a multidomain protein comprising a methionine-rich (M) domain, a helical N domain, and a Ras-like guanine triphosphatase (GTPase) (G) domain. The N and G domains are commonly referred to as one structural unit, the NG domain. In this article, the complex structure of SRP and SR is investigated with the Gaussian network model (GNM) and anisotropic network model (ANM). GNM provides the information of structure stability. It is found that the intermolecular interactions between SRP and SR can obviously decrease the fluctuation of NG domains. Nevertheless, the large structural rearrangement will take place during the cotranslational protein targeting cycle. Hence, the moving directions of fluctuation regions are further ascertained by using cross-correlation analysis and the ANM. The NG domain of Ffh undergoes a clockwise rotation around the GM linker and the M domain of Ffh shows an opposite direction to the NG domain. These functional movements will facilitate the SRP structure to transform into the free form and the sequence-bound form. These simple coarse-grained analyses can be used as a general and quick method for the mechanism studies of protein assembly and supramolecular systems.
Collapse
Affiliation(s)
- Shan Chang
- College of Informatics, South China Agricultural University, Guangzhou, 510642, China.
| | | | | | | | | |
Collapse
|
31
|
Parisien M, Yi C, Pan T. Rationalization and prediction of selective decoding of pseudouridine-modified nonsense and sense codons. RNA (NEW YORK, N.Y.) 2012; 18:355-367. [PMID: 22282339 PMCID: PMC3285925 DOI: 10.1261/rna.031351.111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 12/05/2011] [Indexed: 05/31/2023]
Abstract
A stop or nonsense codon is an in-frame triplet within a messenger RNA that signals the termination of translation. One common feature shared among all three nonsense codons (UAA, UAG, and UGA) is a uridine present at the first codon position. It has been recently shown that the conversion of this uridine into pseudouridine (Ψ) suppresses translation termination, both in vitro and in vivo. Furthermore, decoding of the pseudouridylated nonsense codons is accompanied by the incorporation of two specific amino acids in a nonsense codon-dependent fashion. Ψ differs from uridine by a single N¹H group at the C5 position; how Ψ suppresses termination and, more importantly, enables selective decoding is poorly understood. Here, we provide molecular rationales for how pseudouridylated stop codons are selectively decoded. Our analysis applies crystal structures of ribosomes in varying states of translation to consider weakened interaction of Ψ with release factor; thermodynamic and geometric considerations of the codon-anticodon base pairs to rank and to eliminate mRNA-tRNA pairs; the mechanism of fidelity check of the codon-anticodon pairing by the ribosome to evaluate noncanonical codon-anticodon base pairs and the role of water. We also consider certain tRNA modifications that interfere with the Ψ-coordinated water in the major groove of the codon-anticodon mini-helix. Our analysis of nonsense codons enables prediction of potential decoding properties for Ψ-modified sense codons, such as decoding ΨUU potentially as Cys and Tyr. Our results provide molecular rationale for the remarkable dynamics of ribosome decoding and insights on possible reprogramming of the genetic code using mRNA modifications.
Collapse
Affiliation(s)
| | - Chengqi Yi
- Department of Biochemistry and Molecular Biology
| | - Tao Pan
- Department of Biochemistry and Molecular Biology
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
32
|
Gong Z, Zhao Y, Chen C, Xiao Y. Role of ligand binding in structural organization of add A-riboswitch aptamer: a molecular dynamics simulation. J Biomol Struct Dyn 2012; 29:403-16. [PMID: 21875158 DOI: 10.1080/07391102.2011.10507394] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The specific binding of ligands is the first step of gene expression or translation regulation by riboswitches. However, understanding the mechanism of the specific binding is still difficult because the tertiary structures of the riboswitch aptamers are available almost only for ligand-bound state at present. In this paper we hope to give some insights into this problem through the studies of the role of ligand-aptamer interaction in the structural organization of add A-riboswitch aptamer, based on the crystal structure of the ligand-bound aptamer. We use all-atom molecular dynamics to simulate the behaviors of the aptamer in ligand-bound, free and mutated states by Amber force field. The results show that the correct paring of the ligand adenine with the nucleotide U74 in the binding pocket is crucial to stabilizing the conformations of the ligand-bound aptamer, especially the helix P1 connecting the expression platform. Our results also suggest that both the nucleotide U74 and U51 may be the key sites of the ligand recognition but the former has much higher probability as the initial docking site. This is in agreement with previous experimental results.
Collapse
Affiliation(s)
- Zhou Gong
- Biomolecular Physics and Modeling Group, Department of Physics Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | | | | | | |
Collapse
|
33
|
Cao Z, Liu L, Wang J. Why the OPLS-AA Force Field Cannot Produce the β-Hairpin Structure of H1 Peptide in Solution When Comparing with the GROMOS 43A1 Force Field? J Biomol Struct Dyn 2011; 29:527-39. [DOI: 10.1080/07391102.2011.10507403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Serikov R, Petyuk V, Vorobijev Y, Koval V, Fedorova O, Vlassov V, Zenkova M. Mechanism of antisense oligonucleotide interaction with natural RNAs. J Biomol Struct Dyn 2011; 29:27-50. [PMID: 21696224 DOI: 10.1080/073911011010524987] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oligonucleotides find several numbers of applications: as diagnostic probes, RT and PCR primers and antisense agents due to their ability of forming specific interactions with complementary nucleotide sequences within nucleic acids. These interactions are strongly affected by accessibility of the target sequence in the RNA structure. In the present work the mechanism of invasion of RNA structure by oligonucleotide was investigated using a model system: yeast tRNA(Phe) and oligonucleotides complementary to the 3'-part of this molecule. Kinetics of interaction of oligonucleotides with in vitro transcript of yeast tRNAPhe was studied using stopped-flow technique with fluorescence quenching detection, 5'-DABCYL labeled oligonucleotide was hybridized with 3'-fluorescein labeled tRNA(Phe). The results evidence for a four-step invasion process of the oligonucleotide-RNA complex formation. The process is initiated by formation of transition complexes with nucleotides in the T-loop and ACCA sequence. This complex formation is followed by RNA unfolding and formation of an extended heteroduplex with the oligonucleotide via strand displacement process. Computer modeling of oligonucleotide-tRNA(Phe) interaction revealed potential factors that could favor transition complexes formation and confirmed the proposed mechanism, showing the oligonucleotide to be a molecular "wedge". Our data evidence that oligonucleotide invasion into structured RNA is initiated by loop-single strand interactions, similar to the initial step of the antisense RNA-RNA interactions. The obtained results can be used for choosing efficient oligonucleotide probes.
Collapse
Affiliation(s)
- R Serikov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Lavrentiev Ave., 630090 Novosibirsk, Russian Federation
| | | | | | | | | | | | | |
Collapse
|
35
|
Semighini EP, Resende JA, de Andrade P, Morais PAB, Carvalho I, Taft CA, Silva CHTP. Using computer-aided drug design and medicinal chemistry strategies in the fight against diabetes. J Biomol Struct Dyn 2011; 28:787-96. [PMID: 21294589 DOI: 10.1080/07391102.2011.10508606] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The aim of this work is to present a simple, practical and efficient protocol for drug design, in particular Diabetes, which includes selection of the illness, good choice of a target as well as a bioactive ligand and then usage of various computer aided drug design and medicinal chemistry tools to design novel potential drug candidates in different diseases. We have selected the validated target dipeptidyl peptidase IV (DPP-IV), whose inhibition contributes to reduce glucose levels in type 2 diabetes patients. The most active inhibitor with complex X-ray structure reported was initially extracted from the BindingDB database. By using molecular modification strategies widely used in medicinal chemistry, besides current state-of-the-art tools in drug design (including flexible docking, virtual screening, molecular interaction fields, molecular dynamics, ADME and toxicity predictions), we have proposed 4 novel potential DPP-IV inhibitors with drug properties for Diabetes control, which have been supported and validated by all the computational tools used herewith.
Collapse
Affiliation(s)
- Evandro P Semighini
- Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. do Cafe, s/n, Monte Alegre, 14040-903, Ribeirao Preto-SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
36
|
Xu X, Su J, Chen W, Wang C. Thermal stability and unfolding pathways of Sso7d and its mutant F31A: insight from molecular dynamics simulation. J Biomol Struct Dyn 2011; 28:717-27. [PMID: 21294584 DOI: 10.1080/07391102.2011.10508601] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The thermo-stability and unfolding behaviors of a small hyperthermophilic protein Sso7d as well as its single-point mutation F31A are studied by molecular dynamics simulation at temperatures of 300 K, 371 K and 500 K. Simulations at 300 K show that the F31A mutant displays a much larger flexibility than the wild type, which implies that the mutation obviously decreases the protein's stability. In the simulations at 371 K, although larger fluctuations were observed, both of these two maintain their stable conformations. High temperature simulations at 500 K suggest that the unfolding of these two proteins evolves along different pathways. For the wild-type protein, the C-terminal alpha-helix is melted at the early unfolding stage, whereas it is destroyed much later in the unfolding process of the F31A mutant. The results also show that the mutant unfolds much faster than its parent protein. The deeply buried aromatic cluster in the F31A mutant dissociates quickly relative to the wild-type protein at high temperature. Besides, it is found that the triple-stranded antiparallel β-sheet in the wild-type protein plays an important role in maintaining the stability of the entire structure.
Collapse
Affiliation(s)
- Xianjin Xu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | | | | | | |
Collapse
|
37
|
Behmard E, Abdolmaleki P, Asadabadi EB, Jahandideh S. Prevalent Mutations of Human Prion Protein: A Molecular Modeling and Molecular Dynamics Study. J Biomol Struct Dyn 2011; 29:379-89. [DOI: 10.1080/07391102.2011.10507392] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Zhou ZL, Zhao JH, Liu HL, Wu JW, Liu KT, Chuang CK, Tsai WB, Ho Y. The Possible Structural Models for Polyglutamine Aggregation: A Molecular Dynamics Simulations Study. J Biomol Struct Dyn 2011; 28:743-58. [DOI: 10.1080/07391102.2011.10508603] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Olmez EO, Alakent B. Alpha7 Helix Plays an Important Role in the Conformational Stability of PTP1B. J Biomol Struct Dyn 2011; 28:675-93. [DOI: 10.1080/07391102.2011.10508599] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Zhao Y, Gong Z, Xiao Y. Improvements of the Hierarchical Approach for Predicting RNA Tertiary Structure. J Biomol Struct Dyn 2011; 28:815-26. [DOI: 10.1080/07391102.2011.10508609] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Chakrabarti B, Bairagya HR, Mallik P, Mukhopadhyay BP, Bera AK. An Insight to Conserved Water Molecular Dynamics of Catalytic and Structural Zn+2ions in Matrix Metalloproteinase 13 of Human. J Biomol Struct Dyn 2011; 28:503-16. [DOI: 10.1080/07391102.2011.10508591] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Cheatham TE, Brooks BR, Kollman PA. Molecular modeling of nucleic acid structure: electrostatics and solvation. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2001; Chapter 7:Unit 7.9. [PMID: 18428877 PMCID: PMC4091950 DOI: 10.1002/0471142700.nc0709s05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics.
Collapse
|