1
|
Javanshad R, Panth R, Venter AR. Effects of Amino Acid Additives on Protein Stability during Electrothermal Supercharging in ESI-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:151-157. [PMID: 38078777 DOI: 10.1021/jasms.3c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The surprising formation of highly charged protein ions from aqueous ammonium bicarbonate solution is a fascinating phenomenon referred to as electrothermal supercharging (ETS). Although the precise mechanism involved is not clearly understood, previous studies predominantly suggest that ETS is due to native protein destabilization in the presence of bicarbonate anion inside the electrospray ionization droplets under high temperatures and spray voltages. To evaluate existing hypotheses surrounding the underlying mechanism of ETS, the effects of several additives on protein charging under ETS conditions were investigated. The changes in the protein charge state distributions were compared by measuring the ratios between the intensities of highest intensity charge states of native and unfolded protein envelopes and shifts in the lowest and highest observed charge states. This study demonstrated that source temperature plays a more important role in ETS compared to spray voltage, especially when using a nebulized microelectrospray ionization source. Moreover, the effect of amino acids on ETS were generally in good agreement with the extensive literature available on the stabilization or destabilization of proteins by these additives in bulk solution. Among the natural amino acids, protein supercharging was significantly reduced by proline and glycine; however, imidazole provided the highest degree of noncovalent complex stabilization against ETS, outperforming the amino acids. Overall, our study shows that the simple addition of stabilizing reagents such as proline and imidazole can reduce the extent of apparent protein unfolding and supercharging in ammonium bicarbonate solution and provide evidence against the roles of charge depletion and thermal unfolding during ETS.
Collapse
Affiliation(s)
- Roshan Javanshad
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008-5413, United States
| | - Rajendra Panth
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008-5413, United States
| | - Andre R Venter
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008-5413, United States
| |
Collapse
|
2
|
Zhu Z, Yang M, Yang G, Zhang B, Cao X, Yuan J, Ge F, Wang S. PP2C phosphatases Ptc1 and Ptc2 dephosphorylate PGK1 to regulate autophagy and aflatoxin synthesis in the pathogenic fungus Aspergillus flavus. mBio 2023; 14:e0097723. [PMID: 37754565 PMCID: PMC10653812 DOI: 10.1128/mbio.00977-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Aspergillus flavus is a model filamentous fungus that can produce aflatoxins when it infects agricultural crops. This study evaluated the protein phosphatase 2C (PP2C) family as a potential drug target with important physiological functions and pathological significance in A. flavus. We found that two redundant PP2C phosphatases, Ptc1 and Ptc2, regulate conidia development, aflatoxin synthesis, autophagic vesicle formation, and seed infection. The target protein phosphoglycerate kinase 1 (PGK1) that interacts with Ptc1 and Ptc2 is essential to regulate metabolism and the autophagy process. Furthermore, Ptc1 and Ptc2 regulate the phosphorylation level of PGK1 S203, which is important for influencing aflatoxin synthesis. Our results provide a potential target for interdicting the toxicity of A. flavus.
Collapse
Affiliation(s)
- Zhuo Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaohong Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Yuan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Ali F, Manzoor U, Khan FI, Lai D, Khan MKA, Chandrashekharaiah KS, Singh LR, Dar TA. Effect of polyol osmolytes on the structure-function integrity and aggregation propensity of catalase: A comprehensive study based on spectroscopic and molecular dynamic simulation measurements. Int J Biol Macromol 2022; 209:198-210. [PMID: 35395280 DOI: 10.1016/j.ijbiomac.2022.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 01/24/2023]
Abstract
Owing to the ability of catalase to function under oxidative stress vis-à-vis its industrial importance, the structure-function integrity of the enzyme is of prime concern. In the present study, polyols (glycerol, sorbitol, sucrose, xylitol), were evaluated for their ability to modulate structure, activity and aggregation of catalase using in vitro and in silico approaches. All polyols increased catalase activity by decreasing Km and increasing Vmax resulting in enhanced catalytic efficiency (kcat/Km) of the enzyme, with glycerol being the most efficient with a kcat/Km increase from 4.38 × 104 mM-1 S-1 (control) to 5.8 × 105 mM-1 S-1. Correlatively with this, enhanced secondary structure with reduced hydrophobic exposure was observed in all polyols. Furthermore, increased stability, with an increase in melting temperature by 15.2 °C, and almost no aggregation was observed in glycerol. Overall, ability to regulate structure-function integrity and aggregation propensity was highest for glycerol and lowest for xylitol. Simulation studies were performed involving structural dynamics measurements, principal component analysis and free energy landscape analysis. Altogether, all polyols were stabilizing in nature and glycerol, in particular, has potential to efficiently prevent not only the antioxidant defense system but also might serve as a stability aid during industrial processing of catalase.
Collapse
Affiliation(s)
- Fasil Ali
- Department of Studies and Research in Biochemistry, Jnana Kaveri Campus, Mangalore University, Karnataka 571232, India
| | - Usma Manzoor
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India
| | - Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Md Khurshid A Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai 600 048, Tamil Nadu, India
| | - K S Chandrashekharaiah
- Department of Studies and Research in Biochemistry, Jnana Kaveri Campus, Mangalore University, Karnataka 571232, India
| | | | - Tanveer Ali Dar
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Sharma GS, Krishna S, Khan S, Dar TA, Khan KA, Singh LR. Protecting thermodynamic stability of protein: The basic paradigm against stress and unfolded protein response by osmolytes. Int J Biol Macromol 2021; 177:229-240. [PMID: 33607142 DOI: 10.1016/j.ijbiomac.2021.02.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/10/2023]
Abstract
Organic osmolytes are known to play important role in stress protection by stabilizing macromolecules and suppressing harmful effects on functional activity. There is existence of several reports in the literature regarding their effects on structural, functional and thermodynamic aspects of many enzymes and the interaction parameters with proteins have been explored. Osmolytes are compatible with enzyme function and therefore, can be accumulated up to several millimolar concentrations. From the thermodynamic point of view, osmolyte raises mid-point of thermal denaturation (Tm) of proteins while having no significant effect on ΔGD° (free energy change at physiological condition). Unfavorable interaction with the peptide backbone due to preferential hydration is the major driving force for folding of unfolded polypeptide in presence of osmolyte. However, the thermodynamic basis of stress protection and origin of compatibility paradigm has been a debatable issue. In the present manuscript, we attempt to elaborate the origin of stress protection and compatibility paradigm of osmolytes based on the effect on thermodynamic stability of proteins. We also infer that protective effects of osmolytes on ΔGD° (of proteins) could also indicate its potential involvement in unfolded protein response and overall stress biology on macromolecular level.
Collapse
Affiliation(s)
- Gurumayum Suraj Sharma
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Snigdha Krishna
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Sheeza Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, J&K, India
| | - Khurshid A Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | | |
Collapse
|
5
|
Improvement of PersiXyn2 activity and stability in presence of Trehalose and proline as a natural osmolyte. Int J Biol Macromol 2020; 163:348-357. [DOI: 10.1016/j.ijbiomac.2020.06.288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/04/2023]
|
6
|
Anumalla B, Prabhu NP. Surface hydration and preferential interaction directs the charged amino acids-induced changes in protein stability. J Mol Graph Model 2020; 98:107602. [PMID: 32251994 DOI: 10.1016/j.jmgm.2020.107602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 01/23/2023]
Abstract
In the present study, we investigate the interaction of amino acid osmolytes, Arg, Lys, Asp and Glu, and a denaturant, guanidinium chloride (Gdm) with proteins. To achieve this, molecular dynamics (MD) simulation of RNase A and α-lactalbumin was performed in the presence of three charged amino acids Arg, Lys, and Asp and the molecular mechanism of amino acid-induced (de)stabilization of the proteins was examined by combining with our earlier report on Glu. As Arg has the side chain similar to that of Gdm and destabilizes the proteins, MD simulation was carried out in the presence of Gdm as well. Radial distribution function and hydration fraction around the protein surface reveals that preferential hydration increases upon the addition of any of the cosolvent; however, the extent of increase is more in the presence of stabilizing cosolvents (stAAs: Lys, Asp and Glu) compared to destabilizing cosolvents (Arg and Gdm). Moreover, the preferential interaction of Arg and Gdm with the proteins is higher than that of stAAs. Residue-level interaction analysis suggests that stAAs preferably interacts with charged amino acids of the proteins whereas Arg and Gdm interactions could be found on almost all the surface exposed residues which might provide higher preferential interaction for these residues. From the results, we propose that the net outcome of preferential hydration versus preferential interaction of the amino acids might determine their effect on the stability of proteins.
Collapse
Affiliation(s)
- Bramhini Anumalla
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - N Prakash Prabhu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India.
| |
Collapse
|
7
|
Sepasi Tehrani H, Moosavi-Movahedi AA. Catalase and its mysteries. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018. [PMID: 29530789 DOI: 10.1016/j.pbiomolbio.2018.03.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Catalase is one of the firsts in every realm of biological sciences. At the same time it also has a number of unusual features. It has one of the highest turnover numbers of all enzymes. It is essential for neutralizing the noxious hydrogen peroxide both in the nature and the various industries such as dairy, textile and pharmaceutics. It also has the merit of being one of the first protein crystals to be isolated. Ironically its three-dimensional structure was discerned some forty years later. However through the times this senile enzyme has continued to intrigue the scientists by surprising facts and phenomena, such as peculiar interweaving of subunits and remarkable thermal stability. It is also known for suicide inactivation by its own substrate. Catalase is known to be implicated in various medical scenarios and its levels have served as a marker in that capacity. It has even been incorporated into several pharmaceuticals. This review strives to clarify these perspectives. It also draws attention to the biophysical contributions offered by thermodynamics and kinetics in these discoveries. The ultimate aim of this review, however, is to state that the venerable catalase will continue to bewilder us with its mysteries well into the twenty-first century.
Collapse
Affiliation(s)
- Hessam Sepasi Tehrani
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | | |
Collapse
|
8
|
Rani A, Venkatesu P. Changing relations between proteins and osmolytes: a choice of nature. Phys Chem Chem Phys 2018; 20:20315-20333. [DOI: 10.1039/c8cp02949k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The stabilization and destabilization of the protein in the presence of any additive is mainly attributed to its preferential exclusion from protein surface and its preferential binding to the protein surface, respectively.
Collapse
Affiliation(s)
- Anjeeta Rani
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | | |
Collapse
|
9
|
Imani M, Shahmohamadnejad S. Recombinant production of Aspergillus Flavus uricase and investigation of its thermal stability in the presence of raffinose and lactose. 3 Biotech 2017; 7:201. [PMID: 28667645 DOI: 10.1007/s13205-017-0841-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022] Open
Abstract
Aspergillus flavus uricase (Rasburicase) with a molecular mass of 135 kDa is currently used for the treatment of gout and hyperuricemia occurring in tumor lysis syndrome. To characterize the effects of raffinose and lactose osmolytes on the uricase structure, its coding sequence was cloned, expressed in E. coli BL21, and purified by Ni-NTA agarose affinity chromatography. Thermal inactivation studies at 40 °C showed that nearly 15% of UOX activity was preserved, while the presence of raffinose and lactose reduced its activity to 35 and 45% of its original activity, respectively. Investigation of UOX thermal stability at 40 °C in the course of time showed that the enzyme relatively lost almost 60% of its original activity after 40 min, whereas more than 50% of UOX activity is preserved in the presence of lactose. Estimation of thermal inactivation rate constant, k in, showed that the UOX k in and UOX k in in the presence of raffinose was unchanged (0.018 min-1), whereas for the presence of lactose, it was 0.015 min-1. Half-life and T m analysis showed that UOX half-life is almost 38 min and addition of raffinose did not change the half-life, whereas the presence of lactose had remarkable impact on UOX half-life (46 min). The presence of raffinose increased UOX T m to a lesser extent, whereas lactose notably enhanced the T m from 27 to 37 °C. Overall, our findings show that lactose has protective effects on UOX stability, while for raffinose, it is relatively compromised.
Collapse
|
10
|
Eronina TB, Mikhaylova VV, Chebotareva NA, Makeeva VF, Kurganov BI. Checking for reversibility of aggregation of UV-irradiated glycogen phosphorylase b under crowding conditions. Int J Biol Macromol 2016; 86:829-39. [DOI: 10.1016/j.ijbiomac.2016.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
|
11
|
Proline hydration at low temperatures: its role in the protection of cell from freeze-induced stress. Amino Acids 2016; 48:1685-94. [DOI: 10.1007/s00726-016-2232-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/05/2016] [Indexed: 11/26/2022]
|
12
|
Reversible adsorption of catalase onto Fe3+ chelated poly(AAm-GMA)-IDA cryogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 50:379-85. [DOI: 10.1016/j.msec.2015.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/14/2015] [Accepted: 02/21/2015] [Indexed: 11/19/2022]
|
13
|
How Can a Free Amino Acid Stabilize a Protein? Insights from Molecular Dynamics Simulation. J SOLUTION CHEM 2015. [DOI: 10.1007/s10953-015-0291-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Abstract
Clinical management of diabetes must overcome the challenge of in vivo glucose sensors exhibiting lifetimes of only a few days. Limited sensor life originates from compromised enzyme stability of the sensing enzyme. Sensing enzymes degrade in the presence of low molecular weight materials (LMWM) and hydrogen peroxide in vivo. Sensing enzymes could be made to withstand these degradative effects by (1) stabilizing the microenvironment surrounding the sensing enzyme or (2) improving the structural stability of the sensing enzyme genetically. We review the degradative effect of LMWM and hydrogen peroxide on the sensing enzyme glucose oxidase (GOx). In addition, we examine advances in stabilizing GOx against degradation using hybrid silica gels and genetic engineering of GOx. We conclude molecularly engineered GOx combined with silica-based encapsulation provides an avenue for designing long-term in vivo sensor systems.
Collapse
Affiliation(s)
- James M Harris
- Department of Biomedical Engineering, Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA.
| | | | | |
Collapse
|