1
|
Peptide Inhibitors Targeting the Neisseria gonorrhoeae Pivotal Anaerobic Respiration Factor AniA. Antimicrob Agents Chemother 2017; 61:AAC.00186-17. [PMID: 28584144 DOI: 10.1128/aac.00186-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/27/2017] [Indexed: 12/24/2022] Open
Abstract
Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea, which is highly prevalent worldwide and has a major impact on reproductive and neonatal health. The superbug status of N. gonorrhoeae necessitates the development of drugs with different mechanisms of action. Here, we focused on targeting the nitrite reductase AniA, which is a pivotal component of N. gonorrhoeae anaerobic respiration and biofilm formation. Our studies showed that gonococci expressing AniA containing the altered catalytic residues D137A and H280A failed to grow under anaerobic conditions, demonstrating that the nitrite reductase function is essential. To facilitate the pharmacological targeting of AniA, new crystal structures of AniA were refined to 1.90-Å and 2.35-Å resolutions, and a phage display approach with libraries expressing randomized linear dodecameric peptides or heptameric peptides flanked by a pair of cysteine residues was utilized. Biopanning experiments led to the identification of 29 unique peptides, with 1 of them, C7-3, being identified multiple times. Evaluation of their ability to interact with AniA using enzyme-linked immunosorbent assay and computational docking studies revealed that C7-3 was the most promising inhibitor, binding near the type 2 copper site of the enzyme, which is responsible for interaction with nitrite. Subsequent enzymatic assays and biolayer interferometry with a synthetic C7-3 and its derivatives, C7-3m1 and C7-3m2, demonstrated potent inhibition of AniA. Finally, the MIC50 value of C7-3 and C7-3m2 against anaerobically grown N. gonorrhoeae was 0.6 mM. We present the first peptide inhibitors of AniA, an enzyme that should be further exploited for antigonococcal drug development.
Collapse
|
2
|
Hamza A, Wagner JM, Evans T, Frasinyuk MS, Kwiatkowski S, Zhan CG, Watt DS, Korotkov KV. Novel mycosin protease MycP₁ inhibitors identified by virtual screening and 4D fingerprints. J Chem Inf Model 2014; 54:1166-73. [PMID: 24628123 PMCID: PMC4010288 DOI: 10.1021/ci500025r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Indexed: 01/17/2023]
Abstract
The rise of drug-resistant Mycobacterium tuberculosis lends urgency to the need for new drugs for the treatment of tuberculosis (TB). The identification of a serine protease, mycosin protease-1 (MycP₁), as the crucial agent in hydrolyzing the virulence factor, ESX-secretion-associated protein B (EspB), potentially opens the door to new tuberculosis treatment options. Using the crystal structure of mycobacterial MycP₁ in the apo form, we performed an iterative ligand- and structure-based virtual screening (VS) strategy to identify novel, nonpeptide, small-molecule inhibitors against MycP₁ protease. Screening of ∼485,000 ligands from databases at the Genomics Research Institute (GRI) at the University of Cincinnati and the National Cancer Institute (NCI) using our VS approach, which integrated a pharmacophore model and consensus molecular shape patterns of active ligands (4D fingerprints), identified 81 putative inhibitors, and in vitro testing subsequently confirmed two of them as active inhibitors. Thereafter, the lead structures of each VS round were used to generate a new 4D fingerprint that enabled virtual rescreening of the chemical libraries. Finally, the iterative process identified a number of diverse scaffolds as lead compounds that were tested and found to have micromolar IC₅₀ values against the MycP₁ target. This study validated the efficiency of the SABRE 4D fingerprints as a means of identifying novel lead compounds in each screening round of the databases. Together, these results underscored the value of using a combination of in silico iterative ligand- and structure-based virtual screening of chemical libraries with experimental validation for the identification of promising structural scaffolds, such as the MycP₁ inhibitors.
Collapse
Affiliation(s)
- Adel Hamza
- Department
of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States
- Center
for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Jonathan M. Wagner
- Department
of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States
- Center
for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Timothy
J. Evans
- Department
of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States
- Center
for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Mykhaylo S. Frasinyuk
- Department
of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States
- Center
for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Institute
of Bioorganic Chemistry and Petrochemistry, Kyiv-94, 02660, Ukraine
| | - Stefan Kwiatkowski
- Department
of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States
- Center
for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Chang-Guo Zhan
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Center
for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
| | - David S. Watt
- Department
of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Center
for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Konstantin V. Korotkov
- Department
of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States
- Center
for Structural Biology, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
3
|
Stambouli N, Wei NN, Jlizi A, Aissa S, Abdelmalek R, Kilani B, Slim A, Tiouiri BAH, Dridi M, Hamza A, Ben Ammar Elgaied A. Structural insight into a novel human CCR5-V130I variant associated with resistance to HIV-1 infection. J Biomol Struct Dyn 2013; 32:1202-10. [PMID: 23869485 DOI: 10.1080/07391102.2013.819297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We report the identification of a novel CC chemokine receptor 5 (CCR5) variant that seems associated with resistance to HIV-1 infection. The V130I mutation of the CCR5 receptor is located in the intracellular loop ICL2 known as DRY box and described in the literature as a nonsynonymous mutation present in nonhuman primates group. Extensive molecular modeling and dynamics simulations were performed to elucidate the mechanism by which the V130I mutation may induce conformational change of the CCR5 folding protein and prevent the interaction with the β-arrestin protein. Our study provides new mechanistic insight into how a specific mutation in the regulatory domain of CCR5 might alter the structural folding of the DRY box and the possible ICL2 loop binding with the β-arrestin protein, as described in our previous computational study. The results from our large-scale simulations complement recent experimental results and clinical features and offer useful insights into the mechanism behind CCR5 protein folding and signal transduction. In order for HIV, the entry of the virus to the cells must fuse with the CCR5 receptor that sits on the surface of T-helper immune cells. The described V130I mutation in the gene encoding the CCR5 protein may results in a defective CCR5-Arrestin binding complex that blocks entry of the virus.
Collapse
Affiliation(s)
- Nejla Stambouli
- a Faculty of Sciences of Tunis, Laboratory of Genetics , Immunology and Human Pathology , Tunis , Tunisia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|